卿珊 李建才
【摘要】 论文提出一种基于ZigBee技术的列车限速信息采集系统的设计思路,且对信息采集系统的硬件和软件分别进行了详细设计,该设计思路能够实现阅读器与电子标签之间的无线通信及阅读器对信息的处理功能。系统主要以射频芯片CC2530为核心,构建了一款低功耗的ZigBee短距离无线通信系统。阅读器单元通过ZigBee技术能够实时准确地采集到标签里面的信息。该设计思想具有广泛的实际应用前景。
【关键词】 ZigBee CC2530 阅读器 标签
近年来,我国铁路部门加快了科学技术的步伐,大力发展电力牵引技术,积极引进先进技术,列车行车速度越来越快。速度快,给国民带来了方便,但是铁路行车安全却成为另一个亟待解决的关键问题。
铁路路面状况信息作为列车行车的重要环节,其准确、实时问题也是重点,更是难点。目前,列车接近临时速度控制区段、接近封锁施工地点或者施工地点邻线行车时,地车间实时信息仅靠地面设置的移动减速信号牌、作业标、移动停车信号牌以及响墩等信号标牌。这种方式缺少了路面状况信息的自动传送和控制,行车安全完全依赖机车司机的注意力和技术水平,稍有疏忽将直接危及行车安全[1]。基于此,亟需建立实时、可靠、准确的铁路安全巡检机制,以确保列车运行的安全。
ZigBee是一种基于IEEE802.15.4的低功耗、低传输速率、架构简单的短距离无线通信技术,它在自动控制领域的应用越来越广泛。由于其传输距离为数十米,使用频段为免费的2.4GHz与900MHz频段,传输速率为20kbps至250kbps,且具有成本低、结构简单、耗电量小等特点,使得利用ZigBee技术组成的网络具备省电、可靠、成本低、容量大、安全、自愈性强等诸多优势。因此,本限速信息采集系统的实现将具有良好的实际经济效益。
一、系统硬件设计
系统的硬件框架主要包括阅读器和电子标签。阅读器和标签的硬件结构是一样的,他们之间通过ZigBee无线通信协议进行短距离通信,通过ZigBee技术,阅读器可以在一定范围内读取到标签里面的信息。主要模块有:射频模块、天线模块、串口转换模块、外设接口和电源模块。
1.1 射频模块
射频模块的设计是本系统设计的难点,该电路主要由CC2530射频电路、滤波匹配电路和天线匹配电路组成。
1.2 天线模块
天线是射频通信中的重要器件,其选择非常重要,它的性能直接影响射频通信的效果。微波段天线必须满足以下几个要求:大小合适能够装置到相应的模具上;有全向或半球覆盖的方向性;提供最大可能的信号给标签的芯片;天线的极化都能与读卡机的询问信号相匹配。因此,该模块采用的是2.4G 14dBi PCB平板定向天线,主要由带精品抗氧化层的铝反射板和0.5米的镀银高品质馈线组成。
1.3 电源模块
电源部分是整个系统正常工作的保证,如果电源部分出现故障,则有可能烧毁整个电路,每个模块对电压的要求有所不同,要保证通信的前端电量充足,需要对电压进行分类管理,保证电源能够达到整个电路工作正常的要求。串口转换模块
本模块主要由芯片MAX485E(用于RS-485与RS-422通信的低功耗收发器,每个器件中都具有一个驱动器和一个接收器)和芯片6N137(高速光电耦合器)组成的电路来完成串口转换功能的,以便于后续调试的进行。信号采集通常是模拟电路和数字电路的混合体,其中模数变换是不可缺少的,模拟电路和AD变换电路决定了系统的信噪比,在铁路系统这种恶劣的环境下干扰比较多,为了保证通信的稳定性,采用6N137将模拟电路及AD变换器和数字电路彻底隔离。
二、系统软件设计
在该系统下,阅读器属于可移动ZigBee模块,考虑低功耗、数据传输安全性等因素,阅读器的工作模式设计为:每隔30ms定时发送查询命令,并且自动切换到接收状态等待标签的回复;标签收到请求信息后会将标签信息发送给阅读器。阅读器在等待标签回复的时候会开启定时器计时。如果阅读器附近存在标签模块,收到标签信息时,则会将该标签信息对数据进行封装成处理器需要的格式发送给处理器,同时向该标签发送灭活命令。然后再等待接收其他的标签信息,以确保所有的标签都被读到。
三、结论
本文提出了基于ZigBee技术铁道临时限速系统的限速信息采集模块的一种新的设计思路,硬件射频部分采用具有成本低却能建立强大的网络节点的CC2530芯片,及覆盖面非常广的2.4G 14dBi PCB平板定向天线等;软件部分也对阅读器和标签的工作模式进行了详细设计。通过对限速信息采集系统的详细设计,使得整个系统中ZigBee模块之间的通信及信息处理更加精准、安全。本文提出的这一设计思路将为整套铁道临时限速系统提供了可靠的技术保障。
参 考 文 献
[1] 金辉. 基于RFID技术的临时限速便携终端的研究与设计[D]. 广州:华南理工大学,2011
[2] 李文仲,段朝玉. ZigBee无线网络技术入门与实践[M] .北京:北京航空航天大学出版社,2007,4
[3] 高守玮. ZigBee技术实践教程[M]. 北京:北京航空航天大学出版社,2009.6
[4] 李新. 基于CC2530的ZigBee网络节点设计[J]. PLC & FA,2011:97-99