朱政 林艾放
【摘要】 在频谱检测中运用光电自适通信技术,主要是采用光纤以及电缆共同作为通信介质。基于此,本文对频谱监测中光电自适应通信技术的运用进行了探讨。
【关键词】 频谱监测 光电自适应 通信技术
频谱监测系统能够对背景噪声实施动态测试,随时检测电磁环境,保证了通信的可靠性。以光纤作为主要介质,电缆作为备用介质,设计出体积小、重量小,能够实现链路自动切换的系统就显得十分必要。
一、光电自适应通信技术的特性
光电自适应通信系统中同时连接电缆和光纤,通过物理层来调整首选通信介质。通常情况下以光纤作为主选通信介质,电缆为备用。如果光纤链路出现问题,物理层的接口设备能够根据检测到的信号情况识别出故障,进而自动将通信链路转接到电缆上。同样,可以将电缆作为主选通信介质,其自动切换的原理相同。这样,光电自适应拥有两套链路,而且实现自动切换,保证了通信的可靠性。
二、光电自适应通信系统硬件设计
1、光以太网物理接口设计。光以太网接口的功能是由光收发器实现的,完成光信号与电信号的相互转换,这种传输是透明性质的。光收发器在发送信号时,首先将电信号进行转换,变成光信号之后发送出去。光信号传回到光接收端口后,同样会被转变为电信号,此时光收发器会显示信号有效,表明接受到的光信号是有效的。光收发器在接受以及发送信号时采用的是独立的光纤,标准的1X9封装,激光波长根据系统的需要采用了1310nm,数据串行速率设计为1.25Gb/s,采用FC螺纹接口对机械进行连接,能够保证连接的可靠度。光收发器使用的是LVPECL电平的对外接口,与使用CML电平的电接口控制器芯片88E1112相连,要针对两种不同的电平进行信号匹配设计。芯片与光收发器之间的电路如图1所示。在该电路当中,采用的是交流耦合电容,输入信号的电平由上下拉电阻根据LVPECL电平的标准进行调整的。当信号从收发器传递到芯片时,LVPECL的信号负载则由发送端的下拉电阻提供,信号线上的电容采用的是交流耦合形式。
2、电以太网物接口设计和控制器选择。在电以太网接口设计中使用的是10/100/1000M以太网模型,借助通电连接器,实现4对以太网收发信号与网络隔离变压器之间的连接,信号通过网络隔离变压器传输给电接口控制器,进而实现协议以及物理层信号之间的转换。在选择电接口物理层接口控制器时,考虑到频谱检测系统的工作要求,并且实现硬件和软件设计简化的目的,采用了88E1112,它具有比较特殊的光电介质自适应检测功能,其内部电路能够对电接口以及光接口的两种信号能量进行监控。在工作中,如果检测到电接口有信号能量,则会通过电网络进行数据传输,当检测到有光信号能量时,又能够通过光纤进行信号的发送和接收。
三、光电自适应软件设计分析
1、电接口物理层接口控制器初始化分析。该控制器的初始化软件操作过程中,内部有两组独立的寄存器分别对光接口以及电接口实施控制,通过设置进而得出应该使用的寄存器。通过在高温以及低温下的测试和实际的运用情况,调整对PHY传输到MAC的差分电平范围。
2、频谱检测系统工作过程。频谱检测设备对命令信息的控制主要通过以太网接受上位机,进而得到设备的信号频率信息、带宽信息等有关参数,对中频率模拟信号数字化处理,经过变化的中频信号传入到信息处理设备中断后,系统会依据信号带宽进而选择是否进行下变频。当下变频后,频谱分析该数字信号,并且处理数字信号,借助光电自适应以太网得将出的结果传递给上位机,进而实现上位机对信号的分析和处理。借助频谱检测设备,根据得到的信号结果,上位机会对电子环境的实时使用状况进行判断,进而通过引导,帮助无线电定位系统有效识别和定位特点频率信号。
四、结语
在机载环境下,频谱检测系统对通信安全、通信设备的体积以及重要有一定要求,将光电自适应通信技术运用到频谱检测系统当中,不仅大大简化了系统电路设计,而且有效地提高了信息传输的可靠性,设备的重量和体积也减小。
参 考 文 献
[1] 李勇. 一种卫星频谱监测系统设计方案及实现[J]. 空间电子技术. 2008,(03):77-80
[2] 胡积宝. 智能光网络最大恢复失败概率的研究[J]. 通信技术,2012,(08):56-58