(∈γ,∈γ∨qδ)-intuitionistic Fuzzy(Soft)Filter of BL-algebras
Since filter theory plays an important role in studying logic algebras,many researchers combine it with mathematical approaches to discuss its generalized properties.Liu and Li[1]applied the concept of fuzzy sets to filter theory and proposed the notions of fuzzy filters and fuzzy prime filters in BL-algebras.Using the notions of membership and quasicoincidence of fuzzy points related with fuzzy sets,Ma and Zhan[2]presented(∈,∈∨q)-fuzzy filters in BL-algebras.Farther more,Yin and Zhan[3]introduced(α,β)-fuzzy filters in BL-algebras where α,β∈(∈γ,qδ,∈γ∧qδ,∈γ∨qδ)andα/=∈γ∧qδ.Zhan and Jun[4]applied the notion of soft setsto the theory of BL-algebras and introduced the notions of soft BL-algebras based on fuzzy sets,then they investigated some characterizations of filteristic soft BL-algebras.
In this paper,in order to study filter theory in BL-algebras more comprehensively,we introduce the notion of(∈γ,∈γ∨qδ)-intuitionistic fuzzy filters in BL-algebras,then investigate some oftheir properties.Based on soft sets,we give the definition of(∈γ,∈γ∨qδ)-intuitionistic fuzzy filters in BL-algebras and study the intuitionistic fuzzy soft image and intuitionistic fuzzy soft inverse image of(∈γ,∈γ∨qδ)-intuitionistic fuzzy filters of BL-algebras.
In this section,we review some basic notions and results which will be needed in the sequel.
Recall that an algebra L=(L,∧,∨,⊙,→,0,1)is a BL-algebra[5]if it is a bounded lattice such that
(1)(L,⊙,1)is a commutative monoid;
(2)⊙and→form an adjoin pair,i.e.,x≤y→z if and only if x⊙y≤z for all x,y,z∈L;
(3)x∧y=x⊙(x→y);
(4)(x→y)∨(y→x)=1.
A non-empty subset A of L is called a filter of L if it satisfies the conditions
(1)∀x,y∈A⇒,x⊙y∈A;
(2)∀x∈A,x≤y⇒y∈A.
A fuzzy set f of X is a function f:X→[0,1](see[6]).
Defi nition 2.1[1]Let f be a fuzzy set in BL-algebra L.f is called a fuzzy filter if f satisfies the following conditions
(1)∀x,y∈A,f(x⊙y)≥min{f(x),f(y)};
(2)f is order-preserving,that is,if x≤y,then f(y)≥f(x).
Defi nition 2.2[7]Let X be a non-empty fixed set.An intuitionistic fuzzy set A is an object having the form
whereµA:X → [0,1]andλA:X → [0,1]denote the degrees of membership and nonmembership of x∈X to the set A,respectively and 0≤µA(x)+λA(x)≤1 for each x∈X.
The set ofallintuitionistic fuzzy sets in X is denoted by I F(X).For the sake ofsimplicity, we use A=〈µA,λA〉for A={〈x,µ(x),λ(x)〉|x∈X}.
Defi nition 2.3[8]Let A,B∈I F(X).Then the intersection A∧B={〈x,min{µA(x), µB(x)},max{λA(x),λB(x)〉|x∈X},the union A∨B={〈x,max{µA(x),µB(x)},min{λA(x),λB(x)〉|x∈X}.
Defi nition 2.4[9]Let r,t∈[0,1)be two real numbers such that 0≤r+t≤1.An intuitionistic fuzzy set A in a set X of the form
is called an intuitionistic fuzzy point with the support x and value〈r,t〉,denoted by x(r,t).
Letγ,δ∈[0,1]be such thatγ<δ.For an intuitionistic fuzzy point x(r,t)and A∈I F(X), we say
(1)x(r,t)∈γA ifµA(x)≥r>γandλA(x)≤t<1−γ;
(2)x(r,t)qδA ifµA(x)+r>2δandλA(x)+t<2−2δ;
(3)x(r,t)∈γ∨qδA if x(r,t)∈γA or x(r,t)qδA;
Based on the concept ofsoft sets[10],Gunduz and Bayramov gave the concept ofintuitionistic fuzzy soft sets and their operations as follows.
Defi nition 2.5[11]Let U be an initial universe and E be a set of parameters,A⊂E. Then a pair(F,A)is called an intuitionistic fuzzy soft set over U,where F is a mapping given by F:A→I F(U).
Defi nition 2.6[11]The intersectionand the unionoftwo intuitionistic fuzzy soft sets(F,A)and(G,B)over U are intuitionistic fuzzy soft sets,defined as
respectively,for allε∈C(C′),where C=C′=A∪B.
In what follows,let L be a BL-algebra and E be a parameter set related to objects in L unless other statements.
Defi nition 3.1 An intuitionistic fuzzy set A= 〈µA,λA〉of L is called(∈γ,∈γ∨qδ}-intuitionistic fuzzy filter of L if for all r1,r2∈(0,1],t1,t2∈[0,1)and x,y∈L,
(F1)x(r1,t1)∈γA and y(r2,t2)∈γA⇒x⊙y(min{r1,r2},max{t1,t2})∈γ∨qδA;
(F2)x(r1,t1)∈γA⇒y(r1,t1)∈γ∨qδA with x≤y.
Example 3.2 Let L={0,a,b,c,1}be a chain where 0<a<b<c<1.For all x,y∈L,we define x∧y=min{x,y},x∨y=max{x,y}and⊙and→as follows
then(L,∧,∨,⊙,→)is a BL-algebra.Define an intuitionistic fuzzy set A in L as
It is easy to show A=〈µA,λA〉is an(∈0.3,∈0.3∨q0.4)-intuitionistic fuzzy filter of L.
Proposition 3.3 Let 2δ=1+γand A be an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L, thenˆAγ={x∈L|µA(x)>γandλA(x)<1−γ}/=∅is a filter of L.
Proof Let A is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L.Let x,y∈ˆAγ,thenµA(x)>γ,λA(x)<1−γandµA(y)>γ,λA(y)<1−γ.Suppose thatµA(x⊙y)≤γ,λA(x⊙y)≥1−γ, then x(µA(x),λA(x))∈γA,y(µA(y),λA(y))∈γA and
Theorem 3.4 If I is a non-empty set of L and 2δ=1+γ.Then I is a filter of L if and only if the intuitionistic fuzzy set A=〈µA,λA〉of L such that
(1)µA(x)≥δandλA(x)≤1−δfor all x∈I;
(2)µA(x)=γandλA(x)=1−γotherwise
is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L.
Proof Assume that I is a filter of L.Let x,y∈I and r1,r2∈(γ,1],t1,t1∈[0,1−γ)be such that x(r1,t1),y(r2,t2)∈γA.ThenµA(x)≥r1>γ,λA(x)≤t1<1−γand so x∈I. Similarly,it can be proved that y∈I.
Since I is a filter of L,then x⊙y∈I,that isµA(x⊙y)≥δandλA(x⊙y)≤1−δ.If min{r1,r2}≤δand max{t1,t2}≥1−δ,thenµA(x⊙y)≥δ≥min{r1,r2}>γandλA(x⊙y)≤1−δ≤max{t1,t2}<1−γ,i.e.,x⊙y(min{r1,r2},max{t1,t2})∈γA.Ifmin{r1,r2}>δand max{t1,t2}<1−δ,thenµA(x⊙y)+min{r1,r2}>2δandλA(x⊙y)+max{t1,t2}<2−2δ. Thus x⊙y(min{r1,r2},max{t1,t2})qδA.Hence x⊙y(min{r1,r2},max{t1,t2})∈γ∨qδA.
Now let x,y∈L and r∈(γ,1],t∈[0,1−γ)be such that x≤y and x(r,t)∈γA.we can prove that x∈I in the above way.Since I is a filter of L,then y∈I,which impliesµA(y)≥δ andλA(y)≤1−δ.If r≤δand t≥1−δ,thenµA(y)≥δ≥r>γandλA(y)≤1−δ≤t<1−γ, i.e.,y(r,t)∈γA.If r>δand t<1−δ,thenµA(y)+r>2δandλA(y)+t<2−2δ,i.e., y(r,t)qδA.Hence y(r,t)∈γ∨qδA.
Therefore,A=〈µA,λA〉is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L.
Conversely,suppose that A is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L.It is easy to see thatHence,I is a filter of L.
Theorem 3.5 Let A=〈µA,λA〉be an intuitionistic fuzzy set of L.Then A is an (∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L if and only if the following conditions hold:for all x,y∈L,
(P1) max{µA(x⊙y),γ}≥min{µA(x),µA(y),δ}and min{λA(x⊙y),1−γ}≤max{λA(x), λA(y),1−δ};
(P2) max{µA(y),γ}≥min{µA(x),δ}and min{λA(y),1−γ}≤max{λA(x),1−δ}with x≤y.
Proof Let A be an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L.Suppose that(P1)does not hold,then there exist x,y∈L such that max{µA(x⊙y),γ}<r=min{µA(x),µA(y),δ}, min{λA(x⊙y),1−γ}>t=max{λA(x),λA(y),1−δ}.Hence,µA(x)≥r>γ,µA(y)≥t>γ, µA(x⊙y)<r andµA(x⊙y)+r<2r≤2δ,λA(x)≤t<1−γ,λA(y)≤t<1−γ,λA(x⊙y)>t andλA(x⊙y)+t>2t≥2−2δ.That is,x(r,t)∈γA,y(r,t)∈γA,buta contradiction.Thus,(P1)holds.
Let x≤y.Suppose that max{µA(y),γ}<r=min{µA(x),δ}and min{λA(y),1−γ}>t= max{λA(x),1−δ}.ThenµA(x)≥r>γ,µA(y)<r,µA(y)+r<2r≤2δandλA(x)≤t<1−γ, λA(y)>t,µA(y)+t>2t≥2−2δ,i.e.,x(r,t)∈γA buta contradiction. Hence,(P2)is valid.
Conversely,suppose that(P1)and(P2)hold.Let x,y∈L,r1,r2∈(γ,1]and t1,t2∈[0,1−γ)be such that x(r1,t1)∈γA,y(r2,t2)∈γA.Then we getµA(x)≥ r1> γ, λA(x)≤t1<1−γ,µA(y)≥r2>γ,λA(y)≤t2<1−γ,
Now,if min{r1,r2}≤δand max{t1,t2}≥1−δ,thenµA(x⊙y)≥min{r1,r2}andλA(x⊙y)≤ max{t1,t2},i.e.,x⊙y(min{r1,r2},max{t1,t2})∈γA.If min{r1,r2}> δandmax{t1,t2}<1−δ,thenµA(x⊙y)+min{r1,r2}≥δ+min{r1,r2}>2δandλA(x⊙y)+ max{t1,t2}≤1−δ+max{t1,t2}<2−2δ,i.e.,x⊙y(min{r1,r2},max{t1,t2})qδA.Hence, x⊙y(min{r1,r2},max{t1,t2})∈γ∨qδA and so(F1)is satisfied.
Let x≤y such that x(r,t)∈γA,where x,y∈L,r∈(γ,1]and t∈[0,1−γ).Then we haveµA(x)≥r>γ,λA(x)≤t<1−γ,max{µA(y),γ}≥min{µA(x),δ}≥max{r,δ}, min{λA(y),1−γ}≤max{λA(x),1−δ}≤{t,1−δ}.
Now,if r≤δand t≥1−δ,thenµA(y)≥r andλA(y)≤t,i.e.,y(r,t)∈γA.If r>δand t<1−δ,thenµA(y)+r≥δ+r>2δandλA(y)+t≤1−δ+t<2−2δ,i.e.,y(r,t)qδA. Hence,y(r,t)∈γ∨qδA and so(F2)holds.
For any intuitionistic fuzzy set A=〈µA,λA〉of L and r∈(γ,1]and t∈[0,1−γ),we denote A(r,t)={x∈L|x(r,t)∈γA}as∈γ-levelset,as qδ-levelset and
The following theorem and corollary presentthe relationshipsbetween(∈γ,∈γ∨qδ)-intuitionistic fuzzy filters and crisp filters of L.
Theorem 3.6 Let 2δ=1+γand A=〈µA,λA〉be an intuitionistic fuzzy set of L.Then A is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L if and only ifis a filter of L for each r∈(γ,1],t∈[0,1−γ).
Proof Assume that A is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L.Letfor some r∈(γ,1],t∈[0,1−γ),then x(r,t)∈γA or x(r,t)qδA.We haveµA(x)≥r>γ, λA(x)≤t<1−γorµA(x)>2δ−r≥2δ−1=γ,λA(x)<2−2δ−t≤2−2δ=1−γ.Since A is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L,thusµA(x⊙y)≥min{µA(x),µA(y),δ} andλA(x⊙y)≤max{λA(x),λA(y),1−δ}.We consider two cases.
Case 1 r∈(γ,δ],t∈[1−δ,1−γ).Then 2δ−r≥δ>r,2−2δ−t≤1−δ<t<1−γand soµA(x)≥r,µA(y)≥r,λA(x)≤t,λA(y)≤t.Thus,µA(x⊙y)≥min{µA(x),µA(y),δ}≥r andλA(x⊙y)≤max{λA(x),λA(y),1−δ}≤t and so x⊙y(r,t)∈γA.
Case 2 r∈(δ,1],t∈[0,1−δ).Then 2δ−r<δ<r,2−2δ−t>1−δ>t and µA(x)>2δ−r,µA(y)>2δ−r,λA(x)<2−2δ−t,λA(y)<2−2δ−t.ThusµA(x⊙y)≥min{µA(x),µA(y),δ}>2δ−r andλA(x⊙y)≤max{λA(x),λA(y),1−δ}<2−2δ−t and so x⊙y(r,t)qδA.
Therefore,x⊙y(r,t)∈γ∨qδA,i.e.,It can be showed thatand x≤y impliesin the similar way.Hence,is a filter of L.
Therefore,(P1)holds.(P2)can be proved in the similar way.Thus,A is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L.
Corollary 3.7 Let A=〈µA,λA〉be an intuitionistic fuzzy set of L.
(1)A is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L if and only if A(r,t)(/=∅)is a filter of L for each r∈(γ,δ],t∈[1−δ,1−γ).
(2)If 2δ=1+γ,then A is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L if and only ifis a filter of L for each r∈(δ,1],t∈[0,1−δ).
In the following,we apply the concept of intuitionistic fuzzy soft sets to filter theory and propose the notion of(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filters of BL-algebras.
Defi nition 3.8 Let(F,A)be an intuitionistic fuzzy soft set of L,where A⊂E.Then (F,A)is called an(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filter of L if F(ε)is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L for eachε∈A.
Proposition 3.9 Let(F,A)and(G,B)be two(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filters of L,where A,B⊂E.If C=A∪B,thenis an(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filter of L.
Proof Since(F,A)and(G,B)are(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filters of L and for eachε∈C,we consider three cases.
Case 1 Ifε∈A,then H(ε)=F(ε)is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filter of L.
Case 2 Ifε∈B,then H(ε)=G(ε)is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft fi lter of L.
Case 3 Ifε∈A∩B,then F(ε)and G(ε)are(∈γ,∈γ∨qδ)-intuitionistic fuzzy filters of L.Let x,y∈L,then
and
Let x,y∈L be such that x≤y.Similarly,we can prove that max{(µF(ε)∧µG(ε))(y),γ}≥min{(µF(ε)∧µG(ε))(x),δ}and min{(λF(ε)∨λG(ε))(y),1−γ}≤max{(λF(ε)∨λG(ε))(x),1−δ}.
Hence,F(ε)∧G(ε)is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L.
Therefore,in any case,H(ε)is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filter of L.Asεis arbitrary,thusis an(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filter of L.
Proposition 3.10 Let(F,A)and(G,B)be two(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filters of L,where A,B⊂E.If A∩B=∅,thenis an(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filter of L.
Proof Since A∩B=∅,for eachε∈C,thenε∈A−B orε∈B−A.Since(F,A)and (G,B)are(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft fi lters of L,ifε∈A−B,then H(ε)=F(ε)is an (∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L.Ifε∈B−A,then H(ε)=G(ε)is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L.Hence,in any case,H(ε)is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L.Asεis arbitrary,(H,C)is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filter of L.
In the above theorem,if A∩B/=∅,(H,C)maybe not an(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filter of L.To show this,we present the following example.
Example 3.11 Let L={0,a,b,c,d,1}be a chain,where 0<b<a<1,0<d<a<1 and 0<d<c<1.Define x∧y=min{x,y},x∨y=max{x,y}and⊙and→as follows
Then(L,∧,∨,⊙,→,0,1)is a BL-algebra(see[3]).Define two intuitionistic fuzzy sets A and B in L byµA(0)=0.2, µA(a)=0.7,µA(b)=0.6,µA(c)=0.2,µA(d)=0.3,µA(1)=0.7, λA(0)=0.5,λA(a)=0.2,λA(b)=0.3,λA(c)=0.5,λA(d)=0.5,λA(1)=0.1 andµB(0)=0.1, µB(a)=0.3,µB(b)=0.25,µA(c)=0.4,µB(d)=0.2,µB(1)=0.6,λB(0)=0.4,λB(a)=0.2, λB(b)=0.4,λB(c)=0.1,λB(d)=0.3,λB(1)=0.2.
Defi ne intuitionistic fuzzy soft sets(F,A′)and(G,B′),where A′={ε1,ε2}and B′= {ε1,ε3}as
Then F(ε1)and G(ε1)are two(∈0.3,∈0.3∨q0.6)-intuitionistic fuzzy filters of L,F(ε1)∨G(ε1)is not an(∈0.3,∈0.3∨q0.6)-intuitionistic fuzzy filter since b(0.6,0.3)∈0.3F(ε1)∨G(ε1), c(0.4,0.1)∈0.3F(ε1)∨G(ε1),but.Hence,(F,A)■(G,B)= (H,C)is not an(∈0.3,∈0.3∨q0.6)-intuitionistic fuzzy soft filter of L.
In what follows,we denote C(L,E),C(S,E′)and C(T,E′′)as the classes of intuitionistic fuzzy soft sets of L,S and T with parameters from E,E′and E′′respectively,where L,S and T are BL-algebras.
Defi nition 4.4 Let f=(u,p):C(L,E)→C(S,E′)be a mapping,where u:L→S and p: E→E′are two mappings.For(G,B)∈C(S,E′),the inverse image of(G,B)under f,denoted by f−1(G,B),is an intuitionistic fuzzy soft set of L defined by f−1(G,B)=(u−1(G),p−1(B)), whereµu−1(G)(ε)(x)=µG(p(ε))(u(x))andλu−1(G)(ε)(x)=λG(p(ε))(u(x)),for allε∈p−1(B)and x∈L.
Defi nition 4.2 Let f=(u,p):C(L,E)→ C(S,E′)be a mapping,where u:L→ S and p:E→E′are mappings.For(F,A)∈C(L,E),the image of(F,A)under f,denoted by f(F,A),is an intuitionistic fuzzy soft set of S defined by f(F,A)=(u(F),p(A)),where
for allη∈p(A)and y∈S.
Theorem 4.3 Let f(u,p):C(L,E)→ C(S,E′)be a mapping,where p:E→ E′is a mapping and u is a homomorphic mapping from L to S.If(G,B)is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft fi lter of S,then f−1(G,B)is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filter of L.
Proof For eachε∈p−1(B),i.e.,p(ε)∈B,then G(p(ε))is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of S.For all x,y∈L,
Let x,y∈L be such that x≤y,then
Thus,u−1(G)(ε)is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L. Asεis arbitrary, f−1(G,B)is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filter of L.
Theorem 4.4 Let f:C(L,E)→C(S,E′)be a mapping,p:E→E′be a mapping and u be a surjective homomorphism from L to S.If(F,A)is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filter of L,then f(F,A)is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filter of S.
Proof For eachη∈B and y1,y2∈S,then
and
If y1≤y2,similarly,we can prove that max{µu(F)(η)(y2),γ}≥min{µu(F)(η)(y1),δ}and min{λu(F)(η)(y2),1−γ}≤max(λu(F)(η)(y1),1−δ}.
Thus u(F)(η)is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of S.Asηis arbitrary,f(F,A)is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filter of S.
[1]LIU Lian-zhen,LI Kai-tai.Fuzzy fi lters of BL-algebras[J].Inform Sci,2005,173:141-154.
[2]MA Xue-ling,ZHAN Jian-ming.On(∈,∈∨q)-fuzzy fi lters of BL-algebras[J].J Syst Sci Complex,2008,21: 144-158.
[3]YIN Yun-qiang,ZHAN Jian-ming.New types of fuzzy filters of BL-algebras[J].Comput Math Appl,2010, 60:2115-2125.
[4]ZHAN Jian-ming,JUN Young Bae.Soft BL-algebras based on fuzzy sets[J].Comput Math Appl,2010,59: 2037-2046.
[5]HAJEK P.Metamathematics of fuzzy logic[M].Dordrecht:Kluwer Academic Publishers,1998.
[6]ZADEH L A.Fuzzy sets[J].Inform Control,1965,8:338-353.
[7]ATANASSOV K.Intuitionistic fuzzy sets[J].Fuzzy Sets and Systems,1986,20:87-96.
[8]DE S K,BISWAS R,ROY A R.Some operations on intuitionistic fuzzy sets[J].Fuzzy Sets and Systems, 2000,114:477-484.
[9]COKER D,DEMIRCI M.On intuitionistic fuzzy points[J].Notes IFS,1995,1(2):79-84.
[10]MOLODTSOV D.Soft set theory-fi rst result[J].Comput Math Appl,1999,37:19-31.
[11]GUNDUZ C,BAYRAMOV S.Intuitionistic fuzzy soft modules[J].Comput Math Appl,2011,62:2480-2486.
[12]KHARAL A,AHMAD B.Mappings on fuzzy soft classes[J].Adv Fuzzy Syst,2009,doi:10.1155/2009/407890.
YANG Yong-wei,XIN Xiao-long,HE Peng-fei
(Department of Mathematics,Northwest University,Xi’an 710127,China)
In the paper,in order to further study the properties of filters of BL-algebras, we propose the concepts of the(∈γ,∈γ∨qδ)-intuitionistic fuzzy filters and(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft fi lters of BL-algebras and derive some related results.Finally,we discuss the properties of images and inverse images of(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filters of BL-algebras.
BL-algebras;intuitionistic fuzzy sets;(∈γ,∈γ∨qδ)-intuitionistic fuzzy filters; soft sets
tion:03E72,08A72
1002–0462(2014)01–0065–11
date:2012-09-11
Supported by the Graduate Independent Innovation Foundation of Northwest University(YZZ12061)
Chin.Quart.J.of Math. 2014,29(1):65—75
Biographies:YANG Yong-wei(1984-),male,native of Shangqiu,Henan,a Ph.D.candidate of Northwest University,engages in fuzzy algebras,logic algebras;XIN Xiao-long(1955-),male,native of Xi’an,Shaanxi,a professor of Northwest University,Ph.D.,engages in logic algebras;HE Peng-fei(1986-),male,native of Xi’an, Shaanxi,a Ph.D.candidate of Northwest University,M.S.D.,engages in fuzzy algebras,rough set theory.
CLC number:O159 Document code:A
Chinese Quarterly Journal of Mathematics2014年1期