系统集成中的高阻硅IPD技术

2014-07-24 07:16刘勇
现代电子技术 2014年14期
关键词:系统集成滤波器

刘勇

摘 要: 集成无源器件(IPD)技术可以将分立的无源器件集成在衬底内部,提高器件Q值及系统集成度。由于高阻硅衬底具有良好的射频特性,高阻硅IPD技术可以制备出Q值高达70以上的电感。高阻硅IPD基于薄膜技术具有高精度、高集成度等特点,可将无源器件特征尺寸缩小一个数量级。同时可利用成熟的硅工艺平台,便于批量生产降低成本。此外,高阻硅IPD技术可与硅通孔(TSV)技术兼容,可实现三维叠层封装。分析表明,高阻硅IPD技术在系统集成中具有广泛应用前景。

关键词: IPD; 系统集成; 高阻硅; 无源器件; 滤波器

中图分类号: TN43?34 文献标识码: A 文章编号: 1004?373X(2014)14?0128?04

High resistance silicon integrated passive device technology for system integration

LIU Yong

(No. 38 Research Institute of CETC, Hefei 230088, China)

Abstract: Integrated passive device (IPD) technology can integrate discrete passive devices into a substrate, and improve the Q factor and system integration level. The inductor whose Q factor is up to 70 can be prepared by high resistance silicon IPD (HRS?IPD) technology because the HRS substrate has a good RF property. HRS?IPD based on thin film technology has the characteristics of high precision and high integration; meanwhile, by which the feature size can be reduced by one order of magnitude. Batch fabrication with lower cost can be realized with the mature silicon technology. Furthermore, HRS?IPD technology can be combined with through silicon via (TSV) technology to realize 3D system packaging. The analyses indicate that the HRS?IPD technology has a good application prospect in system integration.

Keywords: IPD; system integration; high resistance silicon; passive device; filter

0 引 言

系统集成分为同种工艺集成和混合工艺集成。典型的同种工艺集成是采用单一工艺,如CMOS,形成的单片系统;混合工艺集成是将基于不同工艺的功能模块集成在一个封装之中,可形成包含模拟、数字等功能更为复杂的系统。后者可发挥各功能模块不同工艺的优势,综合提升系统性能,且适合三维集成技术,有利于提高模块集成度[1?2]。

混合工艺系统集成中往往有很多分立无源器件,占用衬底面积,影响集成度。传统的衬底只起到电互连作用,集成无源器件(Integrated Passive Device,IPD)技术则可以将无源器件集成到衬底内部,形成功能化衬底[3?4]。典型的电子产品中,PCB上30%~50%的焊点属于无源器件,不仅占用面积,且降低了系统的可靠性。IPD可替代衬底上表贴分立元件,减小分立元件占用的面积、简化表贴步骤、提高集成度,并避免表面焊接在射频段带来的寄生效应。以4.9~5.9 GHz频率范围为例,典型的CMOS IC芯片中电感Q值一般不超过10,利用高阻硅IPD技术能获得Q值高达70以上的电感,可替代CMOS IC芯片中的低Q值电感,提高系统整体性能[5?6]。将IPD功能化衬底与有源器件封装在一起,可进一步形成功能复杂的专用电子产品。

1 厚膜技术与薄膜技术

目前可用的IPD技术分为厚膜技术与薄膜技术。低温共烧陶瓷(LTCC)是典型的厚膜IPD技术,广泛运用在民用通信、军用电子中,然而:陶瓷基板烧结时收缩严重,难以形成高精度埋置元件;厚膜印刷典型线宽在几十μm,而且公差情况不佳,集成度有待提高;需要900 ℃左右的烧结温度,有源器件如IC芯片无法埋置在基板内,难以实现有源元件和无源元件的混合集成[7]。

薄膜IPD技术,基于光刻、CVD沉积、磁控溅射等工艺,膜厚一般在1 μm以下,能提供优良的器件精度和功能密度[8]。基于此,可将无源器件尺寸缩小一个数量级。常用的衬底材料有硅、玻璃、神化嫁和蓝宝石等。由于硅具有价格低、良好的热导率、与IC制作工艺相兼容等优点而被人们所喜爱,因此大量应用于IPD技术中[9]。硅常规工艺采用的衬底材料电阻率较低(1~10 Ω·cm),在微波频段存在较大的介质损耗。近年来,随着单晶硅制备工艺的进步,可以通过区熔法或外延工艺获得高阻硅晶圆[10]。电阻率高于2 500 Ω·cm的高阻硅就可以满足高频微波信号的传输[11]。

2 高阻硅IPD技术

高阻硅IPD技术以高阻硅为衬底,采用薄膜技术制备嵌入式无源器件,使得衬底功能化。新加坡STATS ChipPAC公司提出的典型工艺流程如图1所示:高阻硅衬底上热氧化生成一层SiO2;沉积金属层MCAP作为MIM电容的底电极,通常可以选用Al金属材料;沉积TaSi作为电阻材料;沉积Si3N4层作为MIM电容介质层;在M1金属层上可以制备MIM电容的上电极、电阻两端的引出触点,以及平面螺旋电感;M1与M2之间采用聚酰亚胺无机材料作为绝缘隔离;M2金属层通过镀铜工艺实现,可用来形成高Q值电感;由M2引出UBM焊盘层。采用此种工艺加工出来的电阻、电容、电感集中在衬底上层10%部分。目前,基于高阻硅IPD技术,TaSi薄膜电阻可以达到100 kΩ,MIM电容值为0.2~100 pF,电感值[12]为0.1~10 nH。采用特殊设计时,如在M1和M2上制作双层电感,可以增大电感值。

图1 高阻硅IPD剖面图

由电阻、电容、电感(RCL)构成的无源模块包括功分器、巴伦、滤波器、耦合器、双工器等。设计过程中,首先设计出以上无源模块的集总参数模型,如将[λ4]Wilkinson微带功分器通过式(1)、式(2)转化成集总参数模型:

[ωC=1Z0tanθ2] (1)

[ωL=Z0sinθ] (2)

式中:Z0是功分支路特征阻抗;θ为[π2],对应[π4];ω为工作频率。计算出对应集总L、C数值后,功分器等效LC原理图如图2所示[6]。

原理图设计完成之后,根据原理图中的RCL数值设计各自独立的版图,借助ADS、HFSS等微波软件对版图仿真分析,计算提取版图模型的RCL值。RCL参数提取与LTCC版图提取方式一样,如采用经典二端口网络利用Y矩阵计算方法[13?14]。比较提取参数与原理图参数的差别,修改版图重新进行仿真计算,使得版图提取参数逼近原理图参数。RCL元件版图设计过程中,需要结合工艺设计规则,如M1厚度一般为1 μm左右、MIM介质层Si3N4厚度一般为0.3 μm左右等。

图2 Wilkinson功分器等效集总参数模型

完成RCL各自元件版图设计之后,组合元件形成功分器、巴伦、滤波器等模块版图,进一步进行组合后模块版图三维仿真,分析仿真指标参数与设计参数的吻合度。由于RCL各元件之间存在电磁耦合效应,因此需要通过优化设计得到最终符合指标要求的模块版图[15]。整个IPD模块设计流程可表示为图3。

图3 IPD模块设计流程

利用高阻硅IPD技术及上述设计方法,新加坡STATS ChipPAC公司设计了一系列无源模块。包括802.11a频段(4.9~5.9 GHz)功分器,信号输入/输出端采用金丝键合方式。功分器尺寸1.2 mm×1.0 mm,插入损耗0.61~0.74 dB,回波损耗约-17 dB,隔离度大于20 dB,如图4所示[6]。该频段内的Wilkinson微带功分器特征尺寸[λ4]=14 mm,比高阻硅IPD功分器大一个数量级。由此可见,高阻硅IPD在满足器件性能同时,能大大缩小器件尺寸。STATS ChipPAC公司还设计了基于高阻硅IPD技术的倒装焊形式巴伦等集成无源器件[16]。

图4 高阻硅IPD功分器

Intel公司设计的高阻硅基IPD滤波器,尺寸为1.55 mm×1.55 mm×0.25 mm,用来与基于LTCC和玻璃衬底的IPD技术进行比较,如图5所示。LTCC模块厚度大于500 μm,由于烧结收缩效应,往往需要二次修正;高阻硅IPD模块厚度可薄至100 μm,且RCL精度可控制在5%以内。与玻璃衬底相比,高阻硅具有晶圆优势,便于利用现有硅工艺进行流水生产,具有良好应用前景[17]。

图5 高阻硅IPD滤波器

3 基于高阻硅IPD的系统集成

IPD技术通过将无源器件潜入到衬底当中,以达到减小模块封装尺寸、提高集成度的目的。一方面,设计出的滤波器、巴伦等无源模块可作为一个单独器件使用,通过flip?chip或wire bond焊接到PCB上[18];另一方面,可结合功能化衬底与有源器件以形成高集成度专用电子产品。

Sychip、APM等公司基于高阻硅IPD技术,设计制作出WiFi射频模块。模块包括功能化硅衬底及衬底上的功率放大器、存储器、WiFi芯片等,以APM产品为例,如图6所示。模块尺寸为5.7 mm×9 mm×0.925 mm,大部分无源器件嵌入在硅衬底内部,功放及其他有源器件以裸片或CSP形式通过金丝键合或球焊方式焊接在硅衬底上。

图6 WiFi射频前端模块

整个WiFi射频模块以BGA方式通过28个直径600 μm、间距900 μm的焊球,可与PCB板焊接[19]。一般地,IPD封装模块也可以通过QFN或金丝键合焊接到PCB基板上。典型的球焊寄生电感为0.02 nH,金丝键合寄生电感[6]为0.36 nH。该WiFi射频模块是典型的基于高阻硅IPD技术的集成系统。由于采用硅片作为衬底,高阻硅IPD技术与硅通孔(TSV)技术兼容,可以应用于三维集成系统封装。

4 结 论

IPD技术可以将无源器件集成到衬底内部,提高系统集成度。同时,可以制作高Q值电感,适合替代CMOS芯片中低Q值电感。IPD无源器件既可以作为独立器件使用,也可以在衬底上集成有源器件形成更为复杂功能模块,满足专用电子产品设计需求。与LTCC、玻璃及砷化镓衬底IPD等技术相比,高阻硅IPD在具备高集成度的优点同时,还具有晶圆平台优势,便于利用现有工艺线进行大批量流片生产。高阻硅IPD技术采用硅衬底,可以结合硅通孔(TSV)技术,在三维集成封装中具有重要应用前景。

参考文献

[1] MAURELLI A, BELOT D, CAMPARDO G. SoC and SiP, the Yin and Yang of the Tao for the new electronic era [J]. Proceedings of IEEE, 2009, 97(1): 9?17.

[2] WU J, ANDERSON M, COLLER D, et al. RF SiP technology innovation through integration [C]// Fifth International Conference on Electronic Packaging Technology Proceedings. Shanghai, China: IEEE, 2003: 484?490.

[3] 张药西.半导体技术对无源电子元件发展的影响[J].电子元件与材料,2009,28(5):1?4.

[4] SUN L, CHEN Y, SUN K. System integration using silicon?based integrated passive device technology [C]// Proceedings of the 2012 IEEE international symposium on radio?frequency integration technology. Singapore: IEEE, 2012: 98?100.

[5] CHEN H, HSU Y, LIN T, et al. CMOS wideband LNA design using integrated passive device [C]// IEEE/MTT?S International Microwave Symposium. Boston, MA, USA: IEEE, 2009: 673?676.

[6] KIM H, LIU K, FRYE R, et al. Design of compact power divider using integrated passive device (IPD) technology [C] // IEEE 59th Electronic Components and Technology Conference.

San Diego, CA, USA: IEEE, 2009: 1894?1899.

[7] 孙芳魁,姜巍,赵晖,等.集成无源元件在无线系统中的应用及工艺[J].半导体技术,2006,31(4):241?244.

[8] 李应选.用于集成无源器件的工艺技术[J].电子产品世界, 2001(1):55?57.

[9] 李轶楠.硅基集成无源滤波器的设计与制作[D].大连:大连理工大学,2013.

[10] REYES A, EL?GHAZALY S, DORN S, et al. High resistivity Si as a microwave substrate [C]// Electronic Components and Technology Conference. Orlando, FL, USA : IEEE, 1996: 382?391.

[11] 谢红云,张蔚,何莉剑,等.高阻硅低损耗微波共面波导传输线[C]// 2007年全国微波毫米波会议论文集.北京:电子工业出版社,2007:994?997.

[12] LEE Y, LIU K, FRYE R, et al. Ultra?wide?band (UWB) band?pass?filter using integrated passive device (IPD) technology for wireless applications [C]// IEEE 59th Electronic Components and Technology Conference. San Diego, CA, USA: IEEE, 2009: 1994?1999.

[13] 吴静静,延波,张其劭,等.微波LTCC内埋置电感设计与参数提取[J].电讯技术,2007,47(5):123?126.

[14] SU S, WU S, LAI C, et al. Analysis and modeling of IPD for spiral inductor on glass substrate [C]// International Conference on Microwave and Millimeter Wave Technology. Nanjing, China: IEEE, 2008: 1491?1494.

[15] LIU K, FRYE R. Full?circuit design optimization of a RF silicon integrated passive device [C]// IEEE 15th Topical Meeting on Electrical Performance of Electronic Packaging. Scottsdale, AZ, USA: IEEE, 2006: 327?330.

[16] FRYE R, LIU K, BADAKERE G, et al. Design of optimal coupled?resonator baluns in silicon IPD technology [C]// IEEE 59th Electronic Components and Technology Conference. San Diego, CA, USA: IEEE, 2009: 1900?1907.

[17] KUNDU A, MEGAHED M, SCHMIDT D. Comparison and analysis of integrated passive device technologies [C]// 58th Electronic Components and Technology Conference. Lake Buena Vista, FL, USA: IEEE, 2008: 683?687.

[18] ZOSCHKE K, WOLF M, TOPPER M, et al. Fabrication of application specific integrated passive devices using wafer level packaging technologies [J]. IEEE Transactions on Advanced Packaging, 2007, 30(3): 359?368.

[19] LIU S, WANG C, LEE C, et al. Miniaturized WiFi system module using Sip?IPD for handheld device applications [C]// International Microsystems, Packaging, Assembly and Circuits Technology Conference. Taipei, Taiwan, China: IEEE, 2007: 146?168.

[3] 张药西.半导体技术对无源电子元件发展的影响[J].电子元件与材料,2009,28(5):1?4.

[4] SUN L, CHEN Y, SUN K. System integration using silicon?based integrated passive device technology [C]// Proceedings of the 2012 IEEE international symposium on radio?frequency integration technology. Singapore: IEEE, 2012: 98?100.

[5] CHEN H, HSU Y, LIN T, et al. CMOS wideband LNA design using integrated passive device [C]// IEEE/MTT?S International Microwave Symposium. Boston, MA, USA: IEEE, 2009: 673?676.

[6] KIM H, LIU K, FRYE R, et al. Design of compact power divider using integrated passive device (IPD) technology [C] // IEEE 59th Electronic Components and Technology Conference.

San Diego, CA, USA: IEEE, 2009: 1894?1899.

[7] 孙芳魁,姜巍,赵晖,等.集成无源元件在无线系统中的应用及工艺[J].半导体技术,2006,31(4):241?244.

[8] 李应选.用于集成无源器件的工艺技术[J].电子产品世界, 2001(1):55?57.

[9] 李轶楠.硅基集成无源滤波器的设计与制作[D].大连:大连理工大学,2013.

[10] REYES A, EL?GHAZALY S, DORN S, et al. High resistivity Si as a microwave substrate [C]// Electronic Components and Technology Conference. Orlando, FL, USA : IEEE, 1996: 382?391.

[11] 谢红云,张蔚,何莉剑,等.高阻硅低损耗微波共面波导传输线[C]// 2007年全国微波毫米波会议论文集.北京:电子工业出版社,2007:994?997.

[12] LEE Y, LIU K, FRYE R, et al. Ultra?wide?band (UWB) band?pass?filter using integrated passive device (IPD) technology for wireless applications [C]// IEEE 59th Electronic Components and Technology Conference. San Diego, CA, USA: IEEE, 2009: 1994?1999.

[13] 吴静静,延波,张其劭,等.微波LTCC内埋置电感设计与参数提取[J].电讯技术,2007,47(5):123?126.

[14] SU S, WU S, LAI C, et al. Analysis and modeling of IPD for spiral inductor on glass substrate [C]// International Conference on Microwave and Millimeter Wave Technology. Nanjing, China: IEEE, 2008: 1491?1494.

[15] LIU K, FRYE R. Full?circuit design optimization of a RF silicon integrated passive device [C]// IEEE 15th Topical Meeting on Electrical Performance of Electronic Packaging. Scottsdale, AZ, USA: IEEE, 2006: 327?330.

[16] FRYE R, LIU K, BADAKERE G, et al. Design of optimal coupled?resonator baluns in silicon IPD technology [C]// IEEE 59th Electronic Components and Technology Conference. San Diego, CA, USA: IEEE, 2009: 1900?1907.

[17] KUNDU A, MEGAHED M, SCHMIDT D. Comparison and analysis of integrated passive device technologies [C]// 58th Electronic Components and Technology Conference. Lake Buena Vista, FL, USA: IEEE, 2008: 683?687.

[18] ZOSCHKE K, WOLF M, TOPPER M, et al. Fabrication of application specific integrated passive devices using wafer level packaging technologies [J]. IEEE Transactions on Advanced Packaging, 2007, 30(3): 359?368.

[19] LIU S, WANG C, LEE C, et al. Miniaturized WiFi system module using Sip?IPD for handheld device applications [C]// International Microsystems, Packaging, Assembly and Circuits Technology Conference. Taipei, Taiwan, China: IEEE, 2007: 146?168.

[3] 张药西.半导体技术对无源电子元件发展的影响[J].电子元件与材料,2009,28(5):1?4.

[4] SUN L, CHEN Y, SUN K. System integration using silicon?based integrated passive device technology [C]// Proceedings of the 2012 IEEE international symposium on radio?frequency integration technology. Singapore: IEEE, 2012: 98?100.

[5] CHEN H, HSU Y, LIN T, et al. CMOS wideband LNA design using integrated passive device [C]// IEEE/MTT?S International Microwave Symposium. Boston, MA, USA: IEEE, 2009: 673?676.

[6] KIM H, LIU K, FRYE R, et al. Design of compact power divider using integrated passive device (IPD) technology [C] // IEEE 59th Electronic Components and Technology Conference.

San Diego, CA, USA: IEEE, 2009: 1894?1899.

[7] 孙芳魁,姜巍,赵晖,等.集成无源元件在无线系统中的应用及工艺[J].半导体技术,2006,31(4):241?244.

[8] 李应选.用于集成无源器件的工艺技术[J].电子产品世界, 2001(1):55?57.

[9] 李轶楠.硅基集成无源滤波器的设计与制作[D].大连:大连理工大学,2013.

[10] REYES A, EL?GHAZALY S, DORN S, et al. High resistivity Si as a microwave substrate [C]// Electronic Components and Technology Conference. Orlando, FL, USA : IEEE, 1996: 382?391.

[11] 谢红云,张蔚,何莉剑,等.高阻硅低损耗微波共面波导传输线[C]// 2007年全国微波毫米波会议论文集.北京:电子工业出版社,2007:994?997.

[12] LEE Y, LIU K, FRYE R, et al. Ultra?wide?band (UWB) band?pass?filter using integrated passive device (IPD) technology for wireless applications [C]// IEEE 59th Electronic Components and Technology Conference. San Diego, CA, USA: IEEE, 2009: 1994?1999.

[13] 吴静静,延波,张其劭,等.微波LTCC内埋置电感设计与参数提取[J].电讯技术,2007,47(5):123?126.

[14] SU S, WU S, LAI C, et al. Analysis and modeling of IPD for spiral inductor on glass substrate [C]// International Conference on Microwave and Millimeter Wave Technology. Nanjing, China: IEEE, 2008: 1491?1494.

[15] LIU K, FRYE R. Full?circuit design optimization of a RF silicon integrated passive device [C]// IEEE 15th Topical Meeting on Electrical Performance of Electronic Packaging. Scottsdale, AZ, USA: IEEE, 2006: 327?330.

[16] FRYE R, LIU K, BADAKERE G, et al. Design of optimal coupled?resonator baluns in silicon IPD technology [C]// IEEE 59th Electronic Components and Technology Conference. San Diego, CA, USA: IEEE, 2009: 1900?1907.

[17] KUNDU A, MEGAHED M, SCHMIDT D. Comparison and analysis of integrated passive device technologies [C]// 58th Electronic Components and Technology Conference. Lake Buena Vista, FL, USA: IEEE, 2008: 683?687.

[18] ZOSCHKE K, WOLF M, TOPPER M, et al. Fabrication of application specific integrated passive devices using wafer level packaging technologies [J]. IEEE Transactions on Advanced Packaging, 2007, 30(3): 359?368.

[19] LIU S, WANG C, LEE C, et al. Miniaturized WiFi system module using Sip?IPD for handheld device applications [C]// International Microsystems, Packaging, Assembly and Circuits Technology Conference. Taipei, Taiwan, China: IEEE, 2007: 146?168.

猜你喜欢
系统集成滤波器
加氢站与调压站能源供应系统集成技术及应用
试析汽车产业智能制造中的信息化系统集成
从滤波器理解卷积
开关电源EMI滤波器的应用方法探讨
工业企业系统集成技术 系统集成技术与信息化集成系统(下)
“系统集成”式的改革
基于Canny振荡抑制准则的改进匹配滤波器
基于SystemView的匹配滤波器设计与仿真
基于TMS320C6678的SAR方位向预滤波器的并行实现
车牌识别与视频监控系统集成探讨