周斌+胡秋芬+杨海英+杨新周+牛德云+沈广剑+来天超+杜刚
摘要:为筛选羟基化多样性的菌株,对总状毛霉(Mucor racemosus)生物转化孕酮进行研究。转化产物经HPLC分析,共分离到6个转化产物,通过NMR、MS及FTIR等手段对孕酮转化产物进行结构鉴定。其结构为11α-羟基孕酮(1);15α-羟基孕酮(2);11α, 15β-二羟基孕酮(3);6β, 11α-二羟基孕酮(4);7β,15β-二羟基孕酮(5);1-脱氢11α-羟基孕酮(6)。研究结果表明,总状毛霉转化孕酮的衍生物具有丰富的多样性。
关键词:生物转化;总状毛霉(Mucor racemosus);孕酮;结构鉴定
中图分类号:O621.3 文献标识码:A 文章编号:0439-8114(2014)03-0666-03
1952年Murray等[1]利用黑根霉转化孕酮得到11α-羟基孕酮, 并在甾体工业中大规模应用,由此微生物转化技术在甾体药物生产中的重要性被广泛认识。而甾体化合物的羟基化是微生物转化技术应用的主要方面。羟基化反应是甾体化合物生物转化反应中最重要的反应,由于甾体母核上4个环上有多个次甲基,用化学法进行羟基化很难区分,不能反应的区域选择性及对映体选择性,微生物能够专一地在甾体母核或侧链上引入一个或多个羟基,羟基化改变了甾体的极性,进而影响其毒性、细胞分泌及药物分布,从而产生不同的药效,并可应用于甾体药物工业生产[2]。甾体化合物的羟基化是微生物转化技术应用的主要内容,已有较多的文献报道[3-6]。
筛选优良菌株、发掘新的生物催化剂是发展我国甾体工业的重要课题。而寻找羟基化多样性丰富的菌株,可产生多种羟基化衍生物,在甾体药物研发中会起到事半功倍的作用。已有总状毛霉(Mucor racemosus)转化甾体化合物的报道[7-11],但未见转化孕酮的研究。本研究以实验室保藏总状毛霉菌株对孕酮进行了生物转化研究,筛选转化甾体化合物的催化系统,将来可进一步用于转化其它的甾体药物及药物中间体,为该菌株在开发甾体药物中的应用提供依据。
1 材料与方法
1.1 材料
孕酮购自江苏省盐城信谊医药化工有限公司,经NMR及HPLC检测纯度超过98%。
1.2 微生物菌株
总状毛霉为实验室保藏菌株,分离自重楼根状茎。
1.3 粗提物制备
转化用发酵培养基含3 g/L NaNO3、1 g/L K2HPO4、0.5 g/L MgSO4·7H2O、0.5 g/L KCl、0.01 g/L FeSO4·7H2O、30 g/L蔗糖、孕酮1.0 g/L(pH 6.5),孕酮加少量乙酸乙酯溶解,再加4 g/L吐温80混匀,加水形成乳浊液加入1 L培养基。250 mL 锥形瓶装入100 mL发酵液,共发酵10 L。于28 ℃,220 r/min振荡培养6 d。发酵液用乙酸乙酯萃取,菌丝体用甲醇浸泡超声提取,真空浓缩合并得到粗提物。
1.4 HPLC分析
取0.1 g粗提物,加入1 mL甲醇溶解,用0.25 μm滤膜过滤。色谱柱,Agilent ZORAX SB-C18柱(4.6 cm×150 mm,5 μm);检测器,二级管阵列检测器;流动相,甲醇-水(60/40,V/V);流速,1.0 mL/min;检测波长,244 nm;柱温,40 ℃;进样量,5 μL。通过峰面积积分对各转化产物产率进行计算。
1.5 孕酮转化产物的分离纯化
正相硅胶(200-300目)∶样品=8∶1(V/V)装柱上样,以石油醚-乙酸乙酯体积比为9∶1-1∶9逐级梯度洗脱,含转化产物组分用半制备型高效液相色谱制备,色谱条件,甲醇∶水=50∶50(V/V),流速为3 mL/min,检测波长为244 nm,柱温为40 ℃。
2 结果与分析
2.1 转化结果HPLC分析
由图1可看出,孕酮基本被转化,转化产物极性较大,且种类很丰富。
2.2 孕酮转化产物分离及结构鉴定
经半制备分别得到6个组分:S1、S2、S3、S4、S5、S6。经核磁共振、紫外、旋光、熔点检测,结构鉴定分别为:11α-羟基孕酮(1); 15α-羟基孕酮(2);11α,15β-二羟基孕酮(3);6β,11α-二羟基孕酮(4);7β,15β-二羟基孕酮(5);1-脱氢11α-羟基孕酮(6)。
化合物的理化鉴定结果如下:
(1) 11α-羟基-4-孕甾烯-3, 20-二酮 收率为7.2%;熔点: 165~169 ℃; 1H NMR δ: 5.73 (s, 1H, H-4), 4.03 (td, 1H, H-11), 2.55 (m, 1H, H-17), 0.69 (s, 3H, H-18), 1.31 (s, 3H, H-19), 2.13 (s, 3H, H-21); 13C NMR δ: 37.65 (C-1), 34.30 (C-2), 200.31 (C-3), 124.72 (C-4), 170.95 (C-5), 33.70 (C-6), 31.64 (C-7), 35.07 (C-8), 55.47 (C-9), 40.05 (C-10), 69.02 (C-11), 50.58 (C-12), 44.26 (C-13), 55.47 (C-14), 24.36 (C-15), 23.07 (C-16), 63.24(C-17),14.62 (C-18), 18.42 (C-19), 208.93 (C-20),31.49 (C-21); MS m/z:353[M+ Na]+。与文献[12]对照一致。
(2)15α-羟基-4-孕甾烯-3, 20-二酮 收率为9.8%;熔点: 229~233 ℃; 1H NMR δ: 5.74 (s, 1H, H-4), 4.10 (td, 1H, H-15), 2.81 (s, 1H, H-17), 0.69 (s, 3H, H-18), 1.20 (s, 3H, H-19), 2.13 ( s, 3H, H-21); 13C NMR δ: 35.86 (C-1), 34.07 (C-2), 199.57 (C-3), 124.01 (C-4), 170.81 (C-5), 32.84 (C-6), 31.10 (C-7), 35.32 (C-8), 53.82 (C-9), 38.71 (C-10), 21.00 (C-11), 38.99 (C-12), 44.68 (C-13), 61.00 (C-14), 73.50 (C-15), 35.44(C-16), 62.92 (C-17), 14.76 (C-18), 17.60 (C-19), 208.45 (C-20),31.71(C-21); MS m/z: 353 [M+Na]+。与文献[13]对照一致。
(3)11α,15β-二羟基-4-孕甾烯-3, 20-二酮 收率为5.7%;熔点: 230~240 ℃; 1H NMR δ: 5.75 (s, 1H, H-4), 4.05 (m, 1H, H-11), 4.32 (m, 1H, H-15), 2.51 (t, 1H, H-17), 0.97 (s, 3H, H-18), 1.35(s, 3H, H-19), 2.15 (s, 3H, H-21); 13C NMR δ: 35.92 (C-1), 34.04 (C-2), 201.64 (C-3), 124.15 (C-4), 173.01 (C-5), 33.64 (C-6), 30.62 (C-7), 31.24 (C-8), 58.82 (C-9), 40.20 (C-10), 68.04 (C-11), 51.25 (C-12), 43.82 (C-13), 59.37 (C-14), 69.39 (C-15), 37.25 (C-16), 63.40 (C-17), 16.90 (C-18), 18.08 (C-19), 209.45 (C-20), 31.28 (C-21); MS m/z: 369 [M+Na]+。与文献[13]对照一致。
(4) 6β,11α-二羟基-4 -孕甾烯-3, 20-二酮 收率为32.8%;熔点: 245~248 ℃; 1H NMR δ: 5.78 (s, 1H, H-4 ), 2.68 (t, 1H, H-17), 0.73 (s, 3H, H-18), 1.49 (s, 3H, H-19), 2.14 (s, 3H, H-21), 4.34 (m, 1H, H-6), 4.09 (m, 1H, H-11); 13C NMR δ: 37.46 (C-1), 34.12(C-2), 202.76 (C-3), 126.00 (C-4), 170.55 (C-5), 72.08 (C-6), 38.61 (C-7), 28.22 (C-8), 58.36 (C-9), 39.15(C-10), 68.03 (C-11), 49.43 (C-12), 44.12 (C-13), 55.11 (C-14), 23.98 (C-15), 22.73(C-16), 63.07 (C-17), 14.06 (C-18), 19.51 (C-19), 210.63 (C-20), 30.97 (C-21); MS m/z: 369 [M+ Na]+。与文献[14]对照一致。
(5)7β,15β-二羟基-4-孕甾烯-3, 20-二酮 收率为43.4%;熔点: 243~250 ℃; 1H NMR δ: 0.96 (s, 3H, H-18), 1.24 (s, 3H, H-19), 2.15 (s, 3H, H-21), 3.63 (m, 1H, H-7), 4.46 (m, 1H, H-15), 5.76 (s, 1H, H-4); 13C NMR δ: 35.56 (C-1), 33.81 (C-2), 200.42 (C-3), 124.48 (C-4), 168.63 (C-5), 42.32 (C-6), 71.12 (C-7), 38.68 (C-8), 50.90 (C-9), 38.06 (C-10), 20.93 (C-11),39.51 (C-12), 43.90 (C-13), 60.24 (C-14),73.34 (C-15), 33.48 (C-16), 63.39 (C-17),15.41 (C-18), 17.24 (C-19), 209.52 (C-20),31.41 (C-21); MS m/z: 369 [M+ Na]+。与文献[15]对照一致。
(6)11α-羟基-1, 4-孕甾二烯-3, 20-二酮 收率为1.2%;熔点: 225~230 ℃; 1H NMR δ: 6.09 (s, 1H, H-4), 7.77 (d, 1H, H-1), 6.16 (dd, 1H, H-2), 2.52 (m, 1H, H-17), 0.70 (s , 3H, H-18), 1.30 (s, 3H, H-19), 2.12 (s, 3H, H-21), 4.04 (m, 1H, H-11); 13C NMR δ: 158.89 (C-1), 125.31 (C-2),186.95 (C-3), 124.74 (C-4), 168.05 (C-5),33.16 (C-6), 33.50 (C-7), 34.40 (C-8),60.43 (C-9), 44.06 (C-10), 68.06 (C-11),49.93 (C-12), 44.09 (C-13), 54.96 (C-14),23.15 (C-15), 24.48 (C-16), 62.92 (C-17),14.51 (C-18), 18.74 (C-19), 208.86 (C-20),31.47 (C-21);MS m/z: 351[M+Na]+。与文献[16]对照一致。
2.3 转化途径推测
根据化合物出现顺序及结构特点,对其结构推测如图2。首先,孕酮C-11、C-15羟基化分别转化成11α-羟基孕酮、15α-羟基孕酮,然后11α-羟基孕酮又同时进行两个方向转化:一个方向是转化成11α,15β-二羟基孕酮和6β,11α-二羟基孕酮;另一个方向是通过C-1、C-2脱氢酶的作用转化成1-脱氢11α-羟基孕酮。此外,7β,15β-二羟基孕酮转化率相对较高,而且转化产物中没发现7β-羟基孕酮和15β-羟基孕酮的衍生物,因此可以推测孕酮是直接转化成7β,15β-二羟基孕酮。
3 小结与讨论
总状毛霉转化孕酮得到6个转化产物,分别在C-6、C-7、C-11、C-15实现羟基化,表明孕酮具有多个位点可以通过生物修饰。通过本研究转化产物7β,15β-二羟基孕酮、15α-羟基孕酮与7α,15β-二羟基孕酮、15β-羟基孕酮相比较,可以说明同一底物在不同微生物的转化条件下,能在同一位点进行对映体选择,产生不同构效的化合物,由于化合物的构效不同,其对机体可能会产生不同的药物特性[17],这需要人们更多的发现。孕酮具有多个可以生物修饰位点,而且同一位点能进行对映体选择,由此孕酮可以转化成多样性丰富的衍生物。
转化产物6还发生了1位的脱氢,表现出菌株转化多样性。说明总状毛霉不但有羟化酶存在,而且还有脱氢酶的存在,羟基化酶和脱氢酶属于细胞色素P450酶系[18],这也说明细胞色素P450酶系的多样性,为其在其他甾体药物及药物中间体转化中的应用提供了依据。
参考文献:
[1] MURRAY H C, PETERSON D H. Oxygenation of steroids by mucorales fungi [P]. U. S.: Patant 2602769,1952.1952-07-08.
[2] 张丽清.微生物转化在甾体药物合成中的应用[J].医药工业,1985,16(1):37-41.
[3] MAHATO S B, GARAI S. Advances in Microbial Steroid Biotransformation[J]. Steroids, 1997,62(4):332-345.
[4] KIRK D N, TOMS H C, DOUGLAS C, et al. A survey of the high-field 1H-NMR spectra of the steroid hormones, their hydroxylated derivatives, and related compounds[J]. Journal of the Chemical Society-Perkin Transactions, 1990(9):1567-1594.
[5] FERNANDES P, CRUZ A, ANGELOVA B, et al. Microbial conversion of steroid compounds: recent developments [J]. Enzyme and Microbial Technology,2003,32(6):688-705.
[6] TONG W Y, DONG X. Microbial biotransformation: Recent developments on steroid drugs[J]. Recent patents on biotechnology,2009,3(2):141-153.
[7] TORSHABI M, BADIEE M, FARAMARZI M A, et al. Biotransformation of methyltestosterone by the filamentous fungus mucor racemosus[J]. Chemistry of Natural Compounds,2011, 47(1):59-63.
[8] FARAMARZI M A, ZOLFAGHARY N, YAZDI M T, et al. Microbial conversion of androst-1,4-dien-3,17-dione by mucor racemosus to hydroxysteroid-1,4-dien-3-one derivatives[J]. Journal of Chemical Technology and Biotechnology,2009,84(7):1021-1025.
[9] GE W, WANG S, SHAN L, et al. Transformation of 3 beta-hydroxy-5-en-steroids by mucor racemosus[J]. Journal of Molecular Catalysis B-Enzymatic,2008,55(1-2):37-42.
[10] GE W Z, LI N, SHAN L H, et al. Microbial transformation of 4-ene-3-one steroids by mucor racemosus [J]. Acta Microbiologica Sinica,2007,47(3):540-543.
[11] FARAMARZI M A, BADIEE M, YAZDI M T, et al. Formation of hydroxysteroid derivatives from androst-4-en-3,17-dione by the filamentous fungus mucor racemosus[J]. Journal of Molecular Catalysis B-Enzymatic, 2008, 50(1):7-12.
[12] BLUNT J W, STOTHERS J B. C-13 NMR-studies .69. C-13 NMR-spectra of steroids-survey and commentary [J]. Organic Magnetic Resonance, 1977, 9(8):439-464.
[13] BRYAN M B, SCOTT A P, CERNY I, et al. 15 alpha-hydroxyprogesterone in male sea lampreys,petromyzon marinus L[J]. Steroids,2004,69(7):473-481.
[14] CHOUDHARY M I, BATOOL I, SHAH S A, et al. Microbial hydroxylation of pregnenolone derivatives[J]. Chem Pharm Bull(Tokyo),2005,53(11):1455-1459.
[15] FARAMARZI M A, TABATBAEI Y M, AMINI M, et al. Microbial hydroxylation of progesterone with acremonium strictum[J]. FEMS Microbiol Lett,2003,222(2):183-186.
[16] CHOUDHARY M I, MUHAMMAD N, SHAMSUN N K, et al. Microbial hydroxylation of hydroxyprogesterones and α-glucosidase inhibition activity of their metabolites[J]. Z. Naturforsch,2007(62b):593-599.
[17] 王明媚.手性药物的制备方法[J]. 医药导报,2006,25(4):325-327.
[18] 杜娟娟,陈红莉,李援朝. 甾体类细胞色素 P450 17α酶抑制剂的研究进展[J]. 药学学报,2013,48(1):25-31.
转化产物6还发生了1位的脱氢,表现出菌株转化多样性。说明总状毛霉不但有羟化酶存在,而且还有脱氢酶的存在,羟基化酶和脱氢酶属于细胞色素P450酶系[18],这也说明细胞色素P450酶系的多样性,为其在其他甾体药物及药物中间体转化中的应用提供了依据。
参考文献:
[1] MURRAY H C, PETERSON D H. Oxygenation of steroids by mucorales fungi [P]. U. S.: Patant 2602769,1952.1952-07-08.
[2] 张丽清.微生物转化在甾体药物合成中的应用[J].医药工业,1985,16(1):37-41.
[3] MAHATO S B, GARAI S. Advances in Microbial Steroid Biotransformation[J]. Steroids, 1997,62(4):332-345.
[4] KIRK D N, TOMS H C, DOUGLAS C, et al. A survey of the high-field 1H-NMR spectra of the steroid hormones, their hydroxylated derivatives, and related compounds[J]. Journal of the Chemical Society-Perkin Transactions, 1990(9):1567-1594.
[5] FERNANDES P, CRUZ A, ANGELOVA B, et al. Microbial conversion of steroid compounds: recent developments [J]. Enzyme and Microbial Technology,2003,32(6):688-705.
[6] TONG W Y, DONG X. Microbial biotransformation: Recent developments on steroid drugs[J]. Recent patents on biotechnology,2009,3(2):141-153.
[7] TORSHABI M, BADIEE M, FARAMARZI M A, et al. Biotransformation of methyltestosterone by the filamentous fungus mucor racemosus[J]. Chemistry of Natural Compounds,2011, 47(1):59-63.
[8] FARAMARZI M A, ZOLFAGHARY N, YAZDI M T, et al. Microbial conversion of androst-1,4-dien-3,17-dione by mucor racemosus to hydroxysteroid-1,4-dien-3-one derivatives[J]. Journal of Chemical Technology and Biotechnology,2009,84(7):1021-1025.
[9] GE W, WANG S, SHAN L, et al. Transformation of 3 beta-hydroxy-5-en-steroids by mucor racemosus[J]. Journal of Molecular Catalysis B-Enzymatic,2008,55(1-2):37-42.
[10] GE W Z, LI N, SHAN L H, et al. Microbial transformation of 4-ene-3-one steroids by mucor racemosus [J]. Acta Microbiologica Sinica,2007,47(3):540-543.
[11] FARAMARZI M A, BADIEE M, YAZDI M T, et al. Formation of hydroxysteroid derivatives from androst-4-en-3,17-dione by the filamentous fungus mucor racemosus[J]. Journal of Molecular Catalysis B-Enzymatic, 2008, 50(1):7-12.
[12] BLUNT J W, STOTHERS J B. C-13 NMR-studies .69. C-13 NMR-spectra of steroids-survey and commentary [J]. Organic Magnetic Resonance, 1977, 9(8):439-464.
[13] BRYAN M B, SCOTT A P, CERNY I, et al. 15 alpha-hydroxyprogesterone in male sea lampreys,petromyzon marinus L[J]. Steroids,2004,69(7):473-481.
[14] CHOUDHARY M I, BATOOL I, SHAH S A, et al. Microbial hydroxylation of pregnenolone derivatives[J]. Chem Pharm Bull(Tokyo),2005,53(11):1455-1459.
[15] FARAMARZI M A, TABATBAEI Y M, AMINI M, et al. Microbial hydroxylation of progesterone with acremonium strictum[J]. FEMS Microbiol Lett,2003,222(2):183-186.
[16] CHOUDHARY M I, MUHAMMAD N, SHAMSUN N K, et al. Microbial hydroxylation of hydroxyprogesterones and α-glucosidase inhibition activity of their metabolites[J]. Z. Naturforsch,2007(62b):593-599.
[17] 王明媚.手性药物的制备方法[J]. 医药导报,2006,25(4):325-327.
[18] 杜娟娟,陈红莉,李援朝. 甾体类细胞色素 P450 17α酶抑制剂的研究进展[J]. 药学学报,2013,48(1):25-31.
转化产物6还发生了1位的脱氢,表现出菌株转化多样性。说明总状毛霉不但有羟化酶存在,而且还有脱氢酶的存在,羟基化酶和脱氢酶属于细胞色素P450酶系[18],这也说明细胞色素P450酶系的多样性,为其在其他甾体药物及药物中间体转化中的应用提供了依据。
参考文献:
[1] MURRAY H C, PETERSON D H. Oxygenation of steroids by mucorales fungi [P]. U. S.: Patant 2602769,1952.1952-07-08.
[2] 张丽清.微生物转化在甾体药物合成中的应用[J].医药工业,1985,16(1):37-41.
[3] MAHATO S B, GARAI S. Advances in Microbial Steroid Biotransformation[J]. Steroids, 1997,62(4):332-345.
[4] KIRK D N, TOMS H C, DOUGLAS C, et al. A survey of the high-field 1H-NMR spectra of the steroid hormones, their hydroxylated derivatives, and related compounds[J]. Journal of the Chemical Society-Perkin Transactions, 1990(9):1567-1594.
[5] FERNANDES P, CRUZ A, ANGELOVA B, et al. Microbial conversion of steroid compounds: recent developments [J]. Enzyme and Microbial Technology,2003,32(6):688-705.
[6] TONG W Y, DONG X. Microbial biotransformation: Recent developments on steroid drugs[J]. Recent patents on biotechnology,2009,3(2):141-153.
[7] TORSHABI M, BADIEE M, FARAMARZI M A, et al. Biotransformation of methyltestosterone by the filamentous fungus mucor racemosus[J]. Chemistry of Natural Compounds,2011, 47(1):59-63.
[8] FARAMARZI M A, ZOLFAGHARY N, YAZDI M T, et al. Microbial conversion of androst-1,4-dien-3,17-dione by mucor racemosus to hydroxysteroid-1,4-dien-3-one derivatives[J]. Journal of Chemical Technology and Biotechnology,2009,84(7):1021-1025.
[9] GE W, WANG S, SHAN L, et al. Transformation of 3 beta-hydroxy-5-en-steroids by mucor racemosus[J]. Journal of Molecular Catalysis B-Enzymatic,2008,55(1-2):37-42.
[10] GE W Z, LI N, SHAN L H, et al. Microbial transformation of 4-ene-3-one steroids by mucor racemosus [J]. Acta Microbiologica Sinica,2007,47(3):540-543.
[11] FARAMARZI M A, BADIEE M, YAZDI M T, et al. Formation of hydroxysteroid derivatives from androst-4-en-3,17-dione by the filamentous fungus mucor racemosus[J]. Journal of Molecular Catalysis B-Enzymatic, 2008, 50(1):7-12.
[12] BLUNT J W, STOTHERS J B. C-13 NMR-studies .69. C-13 NMR-spectra of steroids-survey and commentary [J]. Organic Magnetic Resonance, 1977, 9(8):439-464.
[13] BRYAN M B, SCOTT A P, CERNY I, et al. 15 alpha-hydroxyprogesterone in male sea lampreys,petromyzon marinus L[J]. Steroids,2004,69(7):473-481.
[14] CHOUDHARY M I, BATOOL I, SHAH S A, et al. Microbial hydroxylation of pregnenolone derivatives[J]. Chem Pharm Bull(Tokyo),2005,53(11):1455-1459.
[15] FARAMARZI M A, TABATBAEI Y M, AMINI M, et al. Microbial hydroxylation of progesterone with acremonium strictum[J]. FEMS Microbiol Lett,2003,222(2):183-186.
[16] CHOUDHARY M I, MUHAMMAD N, SHAMSUN N K, et al. Microbial hydroxylation of hydroxyprogesterones and α-glucosidase inhibition activity of their metabolites[J]. Z. Naturforsch,2007(62b):593-599.
[17] 王明媚.手性药物的制备方法[J]. 医药导报,2006,25(4):325-327.
[18] 杜娟娟,陈红莉,李援朝. 甾体类细胞色素 P450 17α酶抑制剂的研究进展[J]. 药学学报,2013,48(1):25-31.