模式植物基因功能突变数据库资源报告

2014-07-18 08:09潘晓寒
江苏农业科学 2014年2期
关键词:标签数据库

摘要:拟南芥与水稻是植物基因组中的模式生物,植物的基因功能及基因结构间的相关联系一直是研究的重点,通过对这2种模式生物进行基因敲除来确定基因功能是目前对植物基因研究最为普遍的做法。目前,关于基因功能突变体的数据资源的介绍并不充分,针对这种情况,本文介绍了基因功能研究的大规模随机敲除突变的常见载体标签及其方法,并给出了与其相应的相关数据库的介绍。

关键词:基因敲除;数据库;模式生物;标签

中图分类号: Q754文献标志码: A文章编号:1002-1302(2014)02-0039-04

收稿日期:2013-07-18

作者简介:潘晓寒(1988—),女,江苏宜兴人,硕士研究生,研究方向为生物进化。E-mail:huajianji00@163.com。目前,基因研究已逐渐由结构基因组学向功能基因组学领域展开。拟南芥和水稻作为模式生物,在植物中率先展开基因功能的研究[1]。目前,对基因功能的研究方法有许多种,而建立敲除突变体库是最常见的方法[2]。基因敲除是指用方法使植物基因失活,然后通过观察表型来确定基因结构和功能的关系。最初,γ射线、化学诱变剂EMS等物理化学诱变方法被用来制作突变体[3],之后同源重组[4]、基因沉默、RNA干扰[5]等方法也被用来制作突变体,但这些方法都不足以在多细胞生物体中构建能够包含所有基因的突变体库。自农杆菌在单子叶植物中的转化技术获得成功后,利用外源序列对植物基因组的大规模插入来构建突变体库成为最常用也是最可靠的办法[6-7]。根据插入元件的不同,大规模外源基因的插入建立的突变体库可以大致分为3种:T-DNA插入构建的突变体库[8-9]、转座子插入构建的突变体库[10-11]以及反转座子插入构建的突变体库[12-13]。目前在全世界范围内已建立了大量的上述3种元件作为突变工具的水稻和拟南芥的突变数据[14-15]。

随着研究深入,更多的突变体库在全世界范围内建立起来[16],在拟南芥中更是实现了几乎全部基因都有敲除突变的高覆盖率[2]。在其他植物(如玉米、马铃薯、小麦、苜蓿等)中也都有插入突变数据库的存在[17-19],不过数据尚不够充分。本文介绍了一些重要的拟南芥和水稻突变体库目前的规模和制造突变株的方法,为需要突变株种子以及数据的学者提供方便。

1大规模外源基因插入构建突变体库的几种常用方法

1.1T-DNA插入构建突变体库

T-DNA突变体库的建立首先需要制作载体Ti质粒。抗性基因被整合入载体,然后导入农杆菌中。取植物的愈伤组织进行诱导和继代培养,将继代培养的植物愈伤组织放入农杆菌培养液之中,使其感染农杆菌,最后转入选择培养基培养。在进行完2次选择培养后,将长出的抗性愈伤组织通过组织分化形成植株,对植株进行转基因检测来确保基因敲除工作的完成。提取植物DNA,用TAIL-PCR等方法得到旁邻序列,测序比对全基因组序列得到T-DNA插入的具体位置[20]。

1.2转座子插入构建突变体库

转座子系统分为一元系统和双元系统2种。双元系统是将Ac转座子和Ds转座子分别插入到2个T-DNA载体之中[21],侵染植株,让2种植株杂交得到F1代,又通过自交得到F2代,在F2代中对Ac转座酶进行筛选。为了稳定Ds的插入位置使其不再转移,需要对Ac转座子的存在进行排除。一元系统简化了双元系统,同时将Ac的转座酶编码序列和Ds转座子载入一个T-DNA载体上,通过转座酶的存在使Ds跳跃移位。因此在第一代中就能得到Ds跳跃的植株[22-23]。当Ds转座子转移出原插入位点后,则可以通过筛选将转座酶基因去除,得到稳定遗传突变株。目前作为转座子插入的转座子有玉米转座子Ac/Ds、En/Spm以及金鱼草转座子Tam3。

1.3反转座子标签插入法

1999年,Sato等利用水稻逆转座子Tos17基因敲除体系分离了6个水稻knl-型同源异型框基因,发现了水稻矮化突变基因OSH15。Tos17从此成为植物基因水稻中的一个内源反转座子突变载体[24],主要被用来在水稻中进行突变体数据库的研究[25]。Tos17在自然条件下约有4个拷贝数,在组培的条件下激活,可有5~30个拷贝数插入,分化成植株后就失活,因此Tos17插入引起的突变可以稳定遗传[26]。Tos17的拷贝数随着组织培养时间延长而增多,可以通过控制组织培养时间来控制转座的拷贝数[27]。

2相关植物突变数据库的介绍

2.1拟南芥突变数据库

下面分别介绍了水稻和拟南芥的一些常用的重要突变数据库,表1列出了质粒中所存在的各种元件及其作用。

缩写名称作用19S CaMV Pro花椰菜花叶病毒19S启动子35S CaMV Pro花椰菜花叶病毒35S启动子Amp氨苄青霉素抗性基因F1 oriF1噬菌体复制起始位点GAL4/VP16酵母转录激活蛋白Gal4基因/单纯疱疹病毒蛋白VP16蛋白基因GFP绿色荧光蛋白基因GUS转β-葡糖醛酸酶基因Hph潮霉素抗性基因aph(4)-IaHyg潮霉素抗性基因aph(4)-IbI2水稻α微管A1基因第二内含子MAS Pro甘露碱合成酶双向启动子Nos pro农杆菌胭脂碱启动子Nos Ter农杆菌胭脂碱终止子NptⅡ新霉素磷酸转移酶,抗卡那霉素基因OsTubA1水稻α微管A1基因OsTubA1 Pro水稻α微管A1基因启动子OsTubA1 Ter水稻α微管A1基因终止子ployAployA尾巴pUC oripUC质粒的复制起点pUC18 patial sequencepUC18质粒部分序列Sul1磺胺药物抗性基因

2.1.1SALK T-DNA 数据库SALK实验室是目前用 T-DNA 插入的方法建立的拟南芥基因组插入突变数据库中突变最为可观的实验室。数据库使用传统的T-DNA载体,对拟南芥生态型col进行基因敲除工作。目前完成137 259个转基因植株,敲除拟南芥96%以上基因。这个插入数目在拟南芥中已经接近饱和[2]。SALK实验室使用的质粒载体是pROK2,这是一个由pBIN19改良后的质粒,拥有卡那霉素抗性基因[28]。图1给出了SALK实验室的载体结构。

2.1.2RATM(Riken)Ac/Ds转座子敲除数据库RATM数据库是一个采用Ds转座子对拟南芥进行基因敲除的数据库[29]。这个基因敲除数据库已有17 671个突变株。突变体库采用双元载体的方法,将含有Ac转座酶序列的T-DNA插入突变株与含有Ds转座子的T-DNA插入突变株杂交,得到突变株种子,然后对种子进行植株培养,再自交对种子进行筛选,剔除那些含有Ac转座酶的不稳定植株。图2给出了RTAM转座子标签的结构。

2.1.3GABI-Kat T-DNA数据库GABI-Kat数据库是一个使用T-DNA对拟南芥生态型col-0进行基因敲除的数据库,在T-DNA插入数据库数目仅次于SALK T-DNA 数据库。目前已有130 000条侧翼序列标签以及70 578左右的突变株系。其中被敲除的基因数量达62.5%[30]。质粒是pAC161、pADIS1、pAC160和pGABI1[31],通过加入增强子作为激活标签。F1代抗性植株的种子在F2代时可能会丢失插入的T-DNA,因此所有的二代种都必须经过检验确定 T-DNA 插入。目前这个数据库的T-DNA保留率在78%左右[32]。图3给出了GABI-Kat载体pAC161的结构。

2.2水稻突变数据库

2.2.1POSTECH RISD T-DNA数据库RISD数据库是由韩国postech中心植物功能基因组实验室构建的以传统的 T-DNA 为载体的数据库, 大约有47 932个T-DNA插入突

变株[33-34]。另外在T-DNA的插入过程中,需通过组培的阶段,因而产生反转座子Tos17的新插入,生成一部分新的突变株。使用的载体有pGA2707、pGA2717以及激活标签载体pGA2715、pGA2772[35]。图4给出postech实验室T-DNA载体pGA2707的结构。

2.2.2SHIP T-DNA数据库SHIP数据库是中国科学院上海植物生态生理研究所建立的T-DNA插入突变体库,以水稻粳稻中花11作为受体品种。对插入到基因的突变株植株进行分离,使用的质粒为pSMR-J18R,这是水稻基因突变研究较常见的载体,少数植株采用质粒pCAMBIA1301[36]。图5给出SHIP实验室T-DNA载体pSMR-J18R的结构。

2.2.3RTIM Tos17突变数据库RTIM数据库由日本农业资源研究所(NIAS)开展构建,采用的水稻株系是粳稻品种日本晴[37]。该数据库利用Tos17反转座子来制造突变数据库[38],突变株中反转座子插入位点数量较高,通常每个突变株都带有10~12个反转座子插入。

3植物突变数据库的研究前景

基因功能的研究继基因结构研究之后对生物自身信息进一步解密,直接关系到生物表型和遗传信息之间的联系,因此尤为被关注。目前,植物基因功能研究正如火如荼地展开,单个基因进行敲除后进行培育获得的稳定遗传的纯和突变株系为后续展开的基因功能的研究提供了很好的研究模型。例如,在植物信号传导、抗逆性研究上突变株起到了不可替代的作用。此外,基因功能获得突变株也和功能缺失突变株系一样在研究中得到重视。本文介绍的这些数据库大部分都提供突变株种子,以满足研究者们对基因功能研究的需要。

随着模式生物基因组研究的深入,各种非模式生物的基因组研究也开始进行。同一个基因结构在不同植物是否拥有相同的功能,基因结构进化的同时是否带入了功能的演变,基因在不断进化分化的同时,功能又受到怎样的影响,基因数量的演变与功能的存在有何关系,都是在植物功能数据库进一步完善后所需解决的问题。另外,载体的构建及抗性基因的筛选等步骤,都将在未来进一步精简,更多的为了专门的研究而提出的新方法也将陆续出现。

参考文献:

[1]Arabidopsis G I. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature,2000,408(6814):796-815.

[2]Alonso J M,Stepanova A N,Leisse T J,et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana[J]. Science Signaling,2003,301(5633):653-657.

[3]Till B J,Colbert T,Codomo C,et al. High-throughput TILLING for Arabidopsis[J]. Methods Mol Biol,2006,323:127-135.

[4]Rong Y S,Golic K G. Gene targeting by homologous recombination in Drosophila[J]. Science,2000,288(5473):2013-2018.

[5]Dietzl G,Chen D,Schnorrer F,et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila[J]. Nature,2007,448(7150):151-156.

[6]lker B,Li Y,Rosso M G,et al. T-DNA-mediated transfer of Agrobacterium tumefaciens chromosomal DNA into plants[J]. Nature Biotechnology,2008,26(9):1015-1017.

[7]Lorieux M,Blein M,Lozano J,et al. Indepth molecular and phenotypic characterization in a rice insertion line library facilitates gene identification through reverse and forward genetics approaches[J]. Plant Biotechnol J,2012,10(5):555-568.

[8]Fu F F,Ye R,Xu S P,et al. Studies on rice seed quality through analysis of a large-scale T-DNA insertion population[J]. Cell Research,2009,19(3):380-391.

[9]Li Y,Rosso M G,Viehoever P,et al. GABI-Kat SimpleSearch:an Arabidopsis thaliana T-DNA mutant database with detailed information for confirmed insertions[J]. Nucleic Acids Research,2007,35(Suppl 1):D874-D878.

[10]Kumar C S,Wing R A,Sundaresan V. Efficient insertional mutagenesis in rice using the maize En/Spm elements[J]. The Plant Journal,2005,44(5):879-892.

[11]Schneider A,Kirch T,Gigolashvili T,et al. A transposon-based activation-tagging population in Arabidopsis thaliana (TAMARA) and its application in the identification of dominant developmental and metabolic mutations[J]. FEBS Letters,2005,579(21):4622-4628.

[12]Hirochika H,Miyao A,Yamazaki M,et al. Retrotransposons of rice as a tool for the functional analysis of genes[C]//Rice genetics Ⅳ. Proceedings of the Fourth International Rice Genetics Symposium,2001:279-292.

[13]Petit J,Bourgeois E,Stenger W,et al. Diversity of the Ty-1 copia retrotransposon Tos17 in rice (Oryza sativa L.) and the AA genome of the Oryza genus[J]. Molecular Genetics and Genomics,2009,282(6):633-652.

[14]阎双勇,谭振波,李仕贵. 水稻插入突变库构建研究进展[J]. 中国生物工程杂志,2004,24(6):48-53.

[15]赵霞,周波,李玉花. T-DNA插入突变在植物功能基因组学中的应用[J]. 生物技术通讯,2009,20(6):880-884.

[16]An G,Jeong D H,Jung K H,et al. Reverse genetic approaches for functional genomics of rice[J]. Plant Molecular Biology,2005,59(1):111-123.

[17]Supartana P,Shimizu T,Nogawa M,et al. Development of simple and efficient in planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens[J]. Journal of Bioscience and Bioengineering,2006,102(3):162-170.

[18]Scholte M,dErfurth I,Rippa S,et al. T-DNA tagging in the model legume Medicago truncatula allows efficient gene discovery[J]. Molecular Breeding,2002,10(4):203-215.

[19]Tadege M,Wen J,He J,et al. Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula[J]. The Plant Journal,2008,54(2):335-347.

[20]李爱宏,张亚芳,吴昌银,等. 水稻T-DNA插入突变体库的筛选及遗传分析[J]. 遗传学报,2006,33(4):319-329.

[21]Johnson A A T,Yu S M,Tester M. Activation tagging systems in rice[M]//Rice functional genomics. New York:Springer,2007:333-353.

[22]Wan S,Wu J,Zhang Z,et al. Activation tagging,an efficient tool for functional analysis of the rice genome[J]. Plant Molecular Biology,2009,69(1/2):69-80.

[23]Greco R,Ouwerkerk P B F,De Kam R J,et al. Transpositional behaviour of an Ac/Ds system for reverse genetics in rice[J]. Theoretical and Applied Genetics,2003,108(1):10-24.

[24]Sato Y,Sentoku N,Miura Y,et al. Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants[J]. EMBO J,1999,18(4):992-1002.

[25]Hirochika H,Mew T W,Brar D S,et al. Insertional mutagenesis in rice using the endogenous retrotransposon[J]. Rice Science:Innovations and Impact for Livelihood,2003:205.

[26]Miyao A,Tanaka K,Murata K,et al. Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome[J]. Plant Cell,2003,15(8):1771-1780.

[27]Hirochika H. Insertional mutagenesis with Tos17 for functional analysis of rice genes[J]. Breeding Science,2010,60(5):486-492.

[28]lker B,Peiter E,Dixon D P,et al. Getting the most out of publicly available T-DNA insertion lines[J]. The Plant Journal,2008,56(4):665-677.

[29]Ito T,Motohashi R,Kuromori T,et al. A resource of 5814 dissociation transposon-tagged and sequence-indexed lines of Arabidopsis transposed from start loci on chromosome 5[J]. Plant and Cell Physiology,2005,46(7):1149-1153.

[30]Kleinboelting N,Huep G,Kloetgen A,et al. GABI-Kat Simple Search:new features of the Arabidopsis thaliana T-DNA mutant database[J]. Nucleic Acids Research,2012,40(Suppl 1):D1211-D1215.

[31]Rosso M G,Li Y,Strizhov N,et al. An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics[J]. Plant Molecular Biology,2003,53(1/2):247-259.

[32]Riao-Pachón D M,Nagel A,Neigenfind J,et al. GabiPD:the GABI primary database—a plant integrative ‘omics database[J]. Nucleic Acids Research,2009,37(Suppl 1):D954-D959.

[33]An G,Lee S,Kim S H,et al. Molecular genetics using T-DNA in rice[J]. Plant and Cell Physiology,2005,46(1):14-22.

[34]Jeong D H,An S,Park S,et al. Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice[J]. Plant J,2006,45(1):123-132.

[35]An S,Park S,Jeong D H,et al. Generation and analysis of end sequence database for T-DNA tagging lines in rice[J]. Plant Physiology,2003,133(4):2040-2047.

[36]Wu G Z,Shi Q M,Niu Y,et al. Shanghai RAPESEED Database:a resource for functional genomics studies of seed development and fatty acid metabolism of Brassica[J]. Nucleic Acids Research,2008,36(Suppl 1):D1044-D1047.

[37]Cheng C,Daigen M,Hirochika H. Epigenetic regulation of the rice retrotransposon Tos17[J]. Molecular Genetics and Genomics,2006,276(4):378-390.

[38]Miyao A,Hirochika H. Transposon insertion lines of rice for analysis of gene function[M]//Rice blast:interaction with rice and control. Netherlands:Springer,2004:107-112.

[22]Wan S,Wu J,Zhang Z,et al. Activation tagging,an efficient tool for functional analysis of the rice genome[J]. Plant Molecular Biology,2009,69(1/2):69-80.

[23]Greco R,Ouwerkerk P B F,De Kam R J,et al. Transpositional behaviour of an Ac/Ds system for reverse genetics in rice[J]. Theoretical and Applied Genetics,2003,108(1):10-24.

[24]Sato Y,Sentoku N,Miura Y,et al. Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants[J]. EMBO J,1999,18(4):992-1002.

[25]Hirochika H,Mew T W,Brar D S,et al. Insertional mutagenesis in rice using the endogenous retrotransposon[J]. Rice Science:Innovations and Impact for Livelihood,2003:205.

[26]Miyao A,Tanaka K,Murata K,et al. Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome[J]. Plant Cell,2003,15(8):1771-1780.

[27]Hirochika H. Insertional mutagenesis with Tos17 for functional analysis of rice genes[J]. Breeding Science,2010,60(5):486-492.

[28]lker B,Peiter E,Dixon D P,et al. Getting the most out of publicly available T-DNA insertion lines[J]. The Plant Journal,2008,56(4):665-677.

[29]Ito T,Motohashi R,Kuromori T,et al. A resource of 5814 dissociation transposon-tagged and sequence-indexed lines of Arabidopsis transposed from start loci on chromosome 5[J]. Plant and Cell Physiology,2005,46(7):1149-1153.

[30]Kleinboelting N,Huep G,Kloetgen A,et al. GABI-Kat Simple Search:new features of the Arabidopsis thaliana T-DNA mutant database[J]. Nucleic Acids Research,2012,40(Suppl 1):D1211-D1215.

[31]Rosso M G,Li Y,Strizhov N,et al. An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics[J]. Plant Molecular Biology,2003,53(1/2):247-259.

[32]Riao-Pachón D M,Nagel A,Neigenfind J,et al. GabiPD:the GABI primary database—a plant integrative ‘omics database[J]. Nucleic Acids Research,2009,37(Suppl 1):D954-D959.

[33]An G,Lee S,Kim S H,et al. Molecular genetics using T-DNA in rice[J]. Plant and Cell Physiology,2005,46(1):14-22.

[34]Jeong D H,An S,Park S,et al. Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice[J]. Plant J,2006,45(1):123-132.

[35]An S,Park S,Jeong D H,et al. Generation and analysis of end sequence database for T-DNA tagging lines in rice[J]. Plant Physiology,2003,133(4):2040-2047.

[36]Wu G Z,Shi Q M,Niu Y,et al. Shanghai RAPESEED Database:a resource for functional genomics studies of seed development and fatty acid metabolism of Brassica[J]. Nucleic Acids Research,2008,36(Suppl 1):D1044-D1047.

[37]Cheng C,Daigen M,Hirochika H. Epigenetic regulation of the rice retrotransposon Tos17[J]. Molecular Genetics and Genomics,2006,276(4):378-390.

[38]Miyao A,Hirochika H. Transposon insertion lines of rice for analysis of gene function[M]//Rice blast:interaction with rice and control. Netherlands:Springer,2004:107-112.

[22]Wan S,Wu J,Zhang Z,et al. Activation tagging,an efficient tool for functional analysis of the rice genome[J]. Plant Molecular Biology,2009,69(1/2):69-80.

[23]Greco R,Ouwerkerk P B F,De Kam R J,et al. Transpositional behaviour of an Ac/Ds system for reverse genetics in rice[J]. Theoretical and Applied Genetics,2003,108(1):10-24.

[24]Sato Y,Sentoku N,Miura Y,et al. Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants[J]. EMBO J,1999,18(4):992-1002.

[25]Hirochika H,Mew T W,Brar D S,et al. Insertional mutagenesis in rice using the endogenous retrotransposon[J]. Rice Science:Innovations and Impact for Livelihood,2003:205.

[26]Miyao A,Tanaka K,Murata K,et al. Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome[J]. Plant Cell,2003,15(8):1771-1780.

[27]Hirochika H. Insertional mutagenesis with Tos17 for functional analysis of rice genes[J]. Breeding Science,2010,60(5):486-492.

[28]lker B,Peiter E,Dixon D P,et al. Getting the most out of publicly available T-DNA insertion lines[J]. The Plant Journal,2008,56(4):665-677.

[29]Ito T,Motohashi R,Kuromori T,et al. A resource of 5814 dissociation transposon-tagged and sequence-indexed lines of Arabidopsis transposed from start loci on chromosome 5[J]. Plant and Cell Physiology,2005,46(7):1149-1153.

[30]Kleinboelting N,Huep G,Kloetgen A,et al. GABI-Kat Simple Search:new features of the Arabidopsis thaliana T-DNA mutant database[J]. Nucleic Acids Research,2012,40(Suppl 1):D1211-D1215.

[31]Rosso M G,Li Y,Strizhov N,et al. An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics[J]. Plant Molecular Biology,2003,53(1/2):247-259.

[32]Riao-Pachón D M,Nagel A,Neigenfind J,et al. GabiPD:the GABI primary database—a plant integrative ‘omics database[J]. Nucleic Acids Research,2009,37(Suppl 1):D954-D959.

[33]An G,Lee S,Kim S H,et al. Molecular genetics using T-DNA in rice[J]. Plant and Cell Physiology,2005,46(1):14-22.

[34]Jeong D H,An S,Park S,et al. Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice[J]. Plant J,2006,45(1):123-132.

[35]An S,Park S,Jeong D H,et al. Generation and analysis of end sequence database for T-DNA tagging lines in rice[J]. Plant Physiology,2003,133(4):2040-2047.

[36]Wu G Z,Shi Q M,Niu Y,et al. Shanghai RAPESEED Database:a resource for functional genomics studies of seed development and fatty acid metabolism of Brassica[J]. Nucleic Acids Research,2008,36(Suppl 1):D1044-D1047.

[37]Cheng C,Daigen M,Hirochika H. Epigenetic regulation of the rice retrotransposon Tos17[J]. Molecular Genetics and Genomics,2006,276(4):378-390.

[38]Miyao A,Hirochika H. Transposon insertion lines of rice for analysis of gene function[M]//Rice blast:interaction with rice and control. Netherlands:Springer,2004:107-112.

猜你喜欢
标签数据库
拒标签
无惧标签 Alfa Romeo Giulia 200HP
不害怕撕掉标签的人,都活出了真正的漂亮
标签化伤害了谁
基于多进制查询树的多标签识别方法