一个杨树GDSL基因组织表达的特性及其在拟南芥异源的表达

2014-07-16 05:13奈婕菲程玉祥
江苏农业科学 2014年3期
关键词:拟南芥转基因

奈婕菲+程玉祥

摘要:GDSL酯酶为脂肪水解酶家族的一个分支,参与植物生长发育和防御反应等多种功能。半定量RT-PCR分析结果显示,毛果杨GDSL酯酶基因Potri.002G253400在顶端茎组织中高丰度特异性表达;构建Potri.002G253400-GFP融合的植物表达载体,转化模式植物拟南芥并获得其过量表达的转基因株系7个;激光共聚焦显微镜检测结果显示,GFP荧光蛋白高丰度表达于转基因植株根的细胞壁区域,说明Potri.002G253400蛋白可能定位于细胞壁。

关键词:毛果杨;拟南芥;GDSL酯酶;载体构建;转基因

中图分类号: S792.110.4 文献标志码: A 文章编号:1002-1302(2014)03-0016-03

GDSL酯酶是脂肪水解酶超家族的一个亚家族,它具有广泛的底物特异性和专一性,能够水解多种酯类物质[1]。它因具有GDS(L)保守区域(pfam,PF00657)简称GDSL,其中G、D和S分别代表甘氨酸、天冬氨酸和丝氨酸等氨基酸残基[2]。近年来,人们从水稻、向日葵、拟南芥和玉米等多种植物体内分离出GDSL酯酶,并鉴定出它具有脂肪酰酯水解酶活性[3]。植物GDSL酯酶是一个多基因家族,在12个不同的植物物种内发现GDSL酯酶成员超过1 100个,如苔藓、葡萄、高粱、水稻、拟南芥和杨树基因组各存在57、96、130、144、108、126个GDSL家族成员[4-5]。GDSL酯酶参与植物发育、形态发生、次级代谢合成及多种防御反应[6-8]。最近,Dharmawardhana等报道了杨树茎由初级到次级生长转变中转录组变化模式[9],一个GDSL基因Potri.002G253400是逐渐降低转录组聚类成员之一,这一信息初步暗示它可能参与了杨树茎的初级生长。本研究通过半定量RT-PCR手段鉴定Potri.002G253400在不同木质化程度茎节中转录表达模式,构建Potri.002G253400融合绿色荧光蛋白基因GFP的植物表达载体,在拟南芥中过量表达Potri.002G253400-GFP并分析该蛋白细胞内的定位情况。这为今后解析GDSL酯酶在杨树茎初级生长中的作用提供了理论基础。

1 材料与方法

1.1 材料

1.1.1 植物材料 以温室生长至3个月的毛果杨为试验材料,从顶端向基部分别取其第1至第6茎节、第9茎节、成熟叶、老叶各组织,用于基因表达分析。用于外源基因遗传转化的植物材料为野生型拟南芥(col-0)。

1.1.2 载体、菌株和培养基 pENTR/SD/D-TOPO(Invitrogen公司)和pGWB5用于转基因植物表达载体构建,转化菌株为大肠杆菌TOP10和DH5α,大肠杆菌和GV3101农杆菌分别用LB和 YEP培养基培养,转基因拟南芥在含50 mg/L卡那霉素的1/2MS培养基上筛选。

1.1.3 试剂 NA提取试剂pBIOZOL Reagent购自Bioflux公司,DNA Marker、dNTP、PrimeScript RT reagent Kit with gDNA eraser 试剂盒购自TaKaRa公司,质粒提取试剂盒购于Promega公司,LR Clonase购自Invitrogen公司,卡那霉素、庆大霉素等药品购自Sigma公司。

1.2 方法

1.2.1 总RNA提取和cDNA的合成 材料经过液氮速冻后研碎至粉末,用pBIOZOL悬浮粉末后装入1.5 mL离心管中,0.1 g样品加入0.5 mL的pBIOZOL,具体操作步骤参照pBIOZOL plant total RNA Extraction Reagent说明书。提取的RNA用不含核糖核酸酶的水溶解,测定其浓度和纯度。总cDNA合成使用PrimeScript RT reagent Kit with gDNA eraser试剂盒,操作步骤参照其说明书。

1.2.2 Potri.002G253400基因引物 用Primer 5.0设计Potri.002G253400半定量PCR引物,序列为UP:5′-GATTATCCAACCCACAGACCAAC-3′和 DN:5′-GGCTAACTCCGCAGGAACACAAC-3′,片段扩增长度为333 bp。Potri.002G253400基因CDS全长片段扩增引物为cds-UP:5′-CACCATGTCAATTCCTAGGATTTTTC-3′和cds-DN:5′-GAGCTTGGCATCCAGGGCCA-3′,扩增片段长度为1 110 bp。

1.2.3 PCR扩增 以所用毛果杨样品的cDNA为模板,半定量和全长CDS的PCR扩增体系均为20 μL,上下游引物各 0.5 μL,1.0 μL模板,1.0 μL Taq DNA聚合酶,2.0 μL dNTP,2.0 μL 10×Buffer,13 μL水。PCR反应程序:95 ℃ 预变性 5 min,95 ℃变性30 s,62 ℃ 退火30 s,72 ℃延伸(半定量和CDS PCR延伸分别为30、90 s),半定量和全长CDS的PCR扩增循环分别为25、33次。

1.2.4 植物表达载体构建 采用Gateway技术构建载体,取25 ng pENTR/SD/D-TOPO载体和15~30 ng Potri.002G253400基因片段相连接,反应体系为5 μL,反应时间 2 h。取 1 μL 连接产物转化TOPO10感受态细胞,操作参见说明书。用cds-UP和cds-DN基因引物PCR扩增鉴定含Potri.002G253400融合质粒菌落,并进行DNA测序确认。取30 ng pENTR/SD/D-TOPO-Potri.002G253400和120 ng pGWB5载体进行LR反应,反应体系2.5 μL、反应时间8~12 h。取 1 μL 反应产物转化DH5α感受态细胞,PCR鉴定含 pGWB5-Potri.002G253400 菌落,重组质粒转化GV3101农杆菌。

1.2.5 拟南芥遗传转化 拟南芥遗传转化沾染法参见文献[10]。

1.2.6 基因组DNA提取 拟南芥基因组DNA提取方法参见文献[11]。

1.2.7 绿色荧光蛋白GFP检测 绿色荧光蛋白GFP的激光共聚焦观察方法参见文献[12]。

2 结果与分析

2.1 杨树Potri.002G253400基因表达特性

以毛果杨第1至第6茎节、第9茎节各cDNA为模板,进行半定量RT-PCR,结果显示,Potri.002G253400基因转录水平在第1茎节处最高,其次为第2、第3茎节,第4至第6、第9茎节中观察不到。此外,使用内参基因Actin作为半定量 RT-PCR 内标,Actin基因扩增数据显示第1至第6、第9茎节各样品cDNA模板浓度基本相等(图1-A)。这个结果表明 Potri.002G253400 基因在顶端组织中大量转录表达。笔者进一步在幼茎、老茎、成熟叶和老叶中检测Potri.002G253400基因转录表达水平,结果显示,在成熟叶中该基因的转录表达水平很低(图1-B)。说明Potri.002G253400基因高丰度表达在毛果杨的顶端分生组织。

2.2 融合Potri.002G253400-GFP植物表达载体构建

以毛果杨幼茎cDNA为模板,用cds-UP和cds-DN引物RT-PCR扩增得到约1.1 kb的片段(图2-A),该片段长度与Potri.002G253400基因理论长度基本吻合。将该DNA片段连接到pENTR/SD/D-TOPO载体上,融合质粒pENTR/SD/D-TOPO-Potri.002G253400约为3.7 kb(图2-A),初步表明目的DNA片段已连接到pENTR/SD/D-TOPO载体上。将该质粒进行DNA测序,结果表明pENTR/SD/D-TOPO载体上DNA片段为Potri.002G253400全长cds片段。

通过LR反应将pENTR/SD/D-TOPO载体上的Potri.002G253400片段同源重组到pGWB5植物表达载体上,融合质粒pGWB5-Potri.002G253400电泳检测结果如图2所示。以该质粒DNA为模板,用Potri.002G253400引物进行PCR扩增,得到的1.1 kb特异条带与目标基因片段大小相符(图2-B)。由于pGWB5载体上融合报告基因GFP,这样构建了C端融合GFP的Potri.002G253400-GFP基因。把 pGWB5-Potri.002G253400 质粒转化GV3101农杆菌,用于 Potri.002G253400 基因遗传转化拟南芥试验。

2.3 Potri.002G253400-GFP转基因拟南芥分析

将上述农杆菌转化拟南芥,筛选获得7株抗卡那霉素的抗性植株。提取各株系基因组DNA作为模板,用Potri.002G253400基因引物扩增,得到Potri.002G253400目的DNA片段(图3),结果表明Potri.002G253400基因已转入拟南芥基因组,然后笔者分析了拟南芥基因组转入的Potri.002G253400基因转录表达。RT-PCR分析结果如图3所示,未转入Potri.002G253400基因的野生型拟南芥中没有扩增出特异条带,而转基因植株中扩增出很亮的特异条带,且大小与Potri.002G253400片段大小吻合。这表明转入到拟南芥基因组的Potri.002G253400呈现出高丰度的转录表达。

由于转入基因是Potri.002G253400-GFP,所以笔者通过激光共聚焦显微镜检测转基因拟南芥中GFP蛋白荧光信号,荧光信号集中在转基因拟南芥根组织的细胞膜或细胞壁区域(图4)。通过蛋白定位预测生物学软件PSORT(http://psort.hgc.jp/form.html)分析可知,Potri.002G253400蛋白最可能定位于细胞壁(0.820)上。

3 结论与讨论

GDSL酯酶基因家族成员广泛存在于植物界,其功能为参与生长发育、形态发生和防御反应等。例如,拟南芥GDSL酯酶GLIP1作为植物免疫力调节因子在植物抗病上起重要作用,GLIP2转录表达被水杨酸、茉莉酸和乙烯信号所诱导[3,13]。本研究结果表明,Potri.002G253400基因转录表达水平随毛果杨茎从初级到次级生长转变而逐渐降低,且在成熟叶中转录水平也很低,这种特异的组织表达模式暗示其功能可能与杨树茎的初级生长相关。植物GDSL酯酶家族成员组织表达模式存在冗余性与特异性,如拟南芥EXL1只在花蕾中表达[14],油菜GDSL基因BnLIP2只在根中表达[15],而番茄GDSL1只在果皮表达强烈[16]。此外,笔者运用GFP荧光蛋白分子检测技术发现,Potri.002G253400蛋白很可能定位在杨树的细胞壁上。细胞壁是由木聚糖、纤维素、半纤维素以及果胶构成的复杂糖类物质,这些成分物质中存在大量的酯键。尽管还没有鉴定出Potri.002G253400 GDSL酯酶水解底物,然而可基于其细胞壁定位推测它很可能参与细胞壁合成或作用细胞壁成分物质的水解修饰。笔者将利用Potri.002G253400过量表达遗传材料进一步探讨该GDSL酯酶在杨树茎初级生长中的作用以及其作用与细胞壁的关系。

参考文献:

[1]Akoh C C,Lee G C,Liaw Y C,et al. GDSL family of serine esterases/lipases[J]. Progress in Lipid Research,2004,43(6):534-552.

[2]Brick D J,Brumlik M J,Buckley J T,et al. A new family of lipolytic plant enzymes with members in rice,arabidopsis and maize[J]. FEBS Letters,1995,377(3):475-480.

[3]Lee D S,Kim B K,Kwon S J,et al. Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling[J]. Biochemical and Biophysical Research Communications,2009,379(4):1038-1042.

[4]Beisson F,Gardies A M,Teissere M,et al. An esterase neosynthesized in post-germinated sun flower seeds is related to a new family of lipolytic enzymes[J]. Plant Physiology and Biochemistry,1997,35(10):761-775.

[5]Ling H. Sequence analysis of GDSL lipase gene family in Arabidopsis thaliana[J]. Pakistan Journal of Biological Sciences,2008,11(5):763-767.

[6]Volokita M,Rosilio-Brami T,Rivkin N,et al. Combining comparative sequence and genomic data to ascertain phylogenetic relationships and explore the evolution of the large GDSL-lipase family in land plants[J]. Molecular Biology and Evolution,2011,28(1):551-565.

[7]Zhang Z Y,Ober J A,Kliebenstein D J. The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis[J]. Plant Cell,2006,18(6):1524-1536.

[8]Agee A E,Surpin M,Sohn E J,et al. MODIFIED VACUOLE PHENOTYPE1 is an Arabidopsis myrosinase associated protein involved in endomembrane protein trafficking[J]. Plant Physiology,2010,152(1):120-132.

[9]Dharmawardhana P,Brunner A M,Strauss S H. Genome-wide transcriptome analysis of the transition from primary to secondary stem development in Populus trichocarpa[J]. BMC Genomics,2010,11:150.

[10]Clough S J,Bent A F.Floral Dip:a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana[J]. Plant Journal,1998,16(6):735-743.

[11]徐平丽,赵晋平,孟静静,等. 一种适宜拟南芥PCR检测的DNA提取方法[J]. 农业科学与技术:英文版,2010,11(3):41-42,155.

[12]Endo S,Pesquet E,Yamaguchi M,et al. Identifying new components participating in the secondary cell wall formation of vessel elements in zinnia and Arabidopsis[J]. Plant Cell,2009,21(4):1155-1165.

[13]Kwon S J,Jin H C,Lee S,et al. GDSL lipase-like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis[J]. Plant J,2009,58(2):235-245.

[14]Schrder F,Lisso J,Müssig C. Expression pattern and putative function of EXL1 and homologous genes in Arabidopsis[J]. Plant Signaling & Behavior,2012,7(1):22-27.

[15]Ling H,Zhao J Y,Zuo K J,et al. Isolation and expression analysis of a GDSL-like lipase gene from Brassica napus L.[J]. Journal of Biochemistry and Molecular Biology,2006,39(3):297-303.

[16]Girard A L,Mounet F,Lemaire-Chamley M,et al. Tomato GDSL1 is required for cutin deposition in the fruit cuticle[J]. Plant Cell,2012,24(7):3119-3134.

[3]Lee D S,Kim B K,Kwon S J,et al. Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling[J]. Biochemical and Biophysical Research Communications,2009,379(4):1038-1042.

[4]Beisson F,Gardies A M,Teissere M,et al. An esterase neosynthesized in post-germinated sun flower seeds is related to a new family of lipolytic enzymes[J]. Plant Physiology and Biochemistry,1997,35(10):761-775.

[5]Ling H. Sequence analysis of GDSL lipase gene family in Arabidopsis thaliana[J]. Pakistan Journal of Biological Sciences,2008,11(5):763-767.

[6]Volokita M,Rosilio-Brami T,Rivkin N,et al. Combining comparative sequence and genomic data to ascertain phylogenetic relationships and explore the evolution of the large GDSL-lipase family in land plants[J]. Molecular Biology and Evolution,2011,28(1):551-565.

[7]Zhang Z Y,Ober J A,Kliebenstein D J. The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis[J]. Plant Cell,2006,18(6):1524-1536.

[8]Agee A E,Surpin M,Sohn E J,et al. MODIFIED VACUOLE PHENOTYPE1 is an Arabidopsis myrosinase associated protein involved in endomembrane protein trafficking[J]. Plant Physiology,2010,152(1):120-132.

[9]Dharmawardhana P,Brunner A M,Strauss S H. Genome-wide transcriptome analysis of the transition from primary to secondary stem development in Populus trichocarpa[J]. BMC Genomics,2010,11:150.

[10]Clough S J,Bent A F.Floral Dip:a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana[J]. Plant Journal,1998,16(6):735-743.

[11]徐平丽,赵晋平,孟静静,等. 一种适宜拟南芥PCR检测的DNA提取方法[J]. 农业科学与技术:英文版,2010,11(3):41-42,155.

[12]Endo S,Pesquet E,Yamaguchi M,et al. Identifying new components participating in the secondary cell wall formation of vessel elements in zinnia and Arabidopsis[J]. Plant Cell,2009,21(4):1155-1165.

[13]Kwon S J,Jin H C,Lee S,et al. GDSL lipase-like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis[J]. Plant J,2009,58(2):235-245.

[14]Schrder F,Lisso J,Müssig C. Expression pattern and putative function of EXL1 and homologous genes in Arabidopsis[J]. Plant Signaling & Behavior,2012,7(1):22-27.

[15]Ling H,Zhao J Y,Zuo K J,et al. Isolation and expression analysis of a GDSL-like lipase gene from Brassica napus L.[J]. Journal of Biochemistry and Molecular Biology,2006,39(3):297-303.

[16]Girard A L,Mounet F,Lemaire-Chamley M,et al. Tomato GDSL1 is required for cutin deposition in the fruit cuticle[J]. Plant Cell,2012,24(7):3119-3134.

[3]Lee D S,Kim B K,Kwon S J,et al. Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling[J]. Biochemical and Biophysical Research Communications,2009,379(4):1038-1042.

[4]Beisson F,Gardies A M,Teissere M,et al. An esterase neosynthesized in post-germinated sun flower seeds is related to a new family of lipolytic enzymes[J]. Plant Physiology and Biochemistry,1997,35(10):761-775.

[5]Ling H. Sequence analysis of GDSL lipase gene family in Arabidopsis thaliana[J]. Pakistan Journal of Biological Sciences,2008,11(5):763-767.

[6]Volokita M,Rosilio-Brami T,Rivkin N,et al. Combining comparative sequence and genomic data to ascertain phylogenetic relationships and explore the evolution of the large GDSL-lipase family in land plants[J]. Molecular Biology and Evolution,2011,28(1):551-565.

[7]Zhang Z Y,Ober J A,Kliebenstein D J. The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis[J]. Plant Cell,2006,18(6):1524-1536.

[8]Agee A E,Surpin M,Sohn E J,et al. MODIFIED VACUOLE PHENOTYPE1 is an Arabidopsis myrosinase associated protein involved in endomembrane protein trafficking[J]. Plant Physiology,2010,152(1):120-132.

[9]Dharmawardhana P,Brunner A M,Strauss S H. Genome-wide transcriptome analysis of the transition from primary to secondary stem development in Populus trichocarpa[J]. BMC Genomics,2010,11:150.

[10]Clough S J,Bent A F.Floral Dip:a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana[J]. Plant Journal,1998,16(6):735-743.

[11]徐平丽,赵晋平,孟静静,等. 一种适宜拟南芥PCR检测的DNA提取方法[J]. 农业科学与技术:英文版,2010,11(3):41-42,155.

[12]Endo S,Pesquet E,Yamaguchi M,et al. Identifying new components participating in the secondary cell wall formation of vessel elements in zinnia and Arabidopsis[J]. Plant Cell,2009,21(4):1155-1165.

[13]Kwon S J,Jin H C,Lee S,et al. GDSL lipase-like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis[J]. Plant J,2009,58(2):235-245.

[14]Schrder F,Lisso J,Müssig C. Expression pattern and putative function of EXL1 and homologous genes in Arabidopsis[J]. Plant Signaling & Behavior,2012,7(1):22-27.

[15]Ling H,Zhao J Y,Zuo K J,et al. Isolation and expression analysis of a GDSL-like lipase gene from Brassica napus L.[J]. Journal of Biochemistry and Molecular Biology,2006,39(3):297-303.

[16]Girard A L,Mounet F,Lemaire-Chamley M,et al. Tomato GDSL1 is required for cutin deposition in the fruit cuticle[J]. Plant Cell,2012,24(7):3119-3134.

猜你喜欢
拟南芥转基因
探秘转基因
转基因,你吃了吗?
转基因生物,你怎么看?
富天冬酰胺蛋白增强拟南芥辐射抗性的研究
尿黑酸对拟南芥酪氨酸降解缺陷突变体sscd1的影响
两种LED光源作为拟南芥生长光源的应用探究
拟南芥干旱敏感突变体筛选及其干旱胁迫响应机制探究
Avp-iCre转基因小鼠的鉴定
天然的转基因天然的转基因“工程师”及其对转基因食品的意蕴
过量表达URO基因抑制拟南芥次生细胞壁开关基因表达