贺江 刘贤金
摘要:采用碳二亚胺法将甲氧基有机磷农药通用半抗原与琼脂糖凝胶进行链接,并利用链接产物对相应的多克隆抗血清进行纯化。经鉴定,偶联反应正常,纯化效果良好且产率约为78.5%;纯化后抗体能够保持对5种农药对象的识别活性,且具有更高的亲和活性。应用纯化后的抗体能够建立起更灵敏的免疫检测方法。
关键词:亲和纯化;甲氧基有机磷农药;广谱特异性抗体;免疫分析
中图分类号: TQ450.7 文献标志码: A 文章编号:1002-1302(2014)04-0033-03
收稿日期:2013-08-20
基金项目:国家自然科学基金(编号:30871658)。
作者简介:贺江(1983—),男,江西萍乡人,博士,讲师,主要从事食品安全与食品生物技术研究。E-mail:hejiang1119@163.com。农药残留作为食品安全问题中的重要方面之一,深受世界各国的普遍关注。建立有效的农药残留监测体系是对农药残留问题进行控制的前提与基础,目前公认的理想农药残留监测体系包括以农药残留快速检测技术作为现场初筛工具、以农药残留检测标准方法作为最终的定性定量确证工具[1]。免疫检测技术是一种简单、快速且灵敏的检测方法,已被广泛用于农药残留的快速检测[2-6]。抗体的特异性和亲和力等特性是决定这类方法检测效果的核心因素。基于动物免疫的多克隆抗体[6-7]、基于杂交瘤技术的单克隆抗体[2,8]以及基于噬菌体展示等分子技术的重组抗体[9-10]等均已在农药免疫残留检测领域有应用,但无论利用哪类抗体进行免疫分析都存在一些会影响检测效果的干扰物质。例如,在多克隆抗血清中存在非特异性或者低亲和力免疫球蛋白;杂交瘤细胞培养液或小鼠腹水中存在白蛋白和转铁蛋白等宿主蛋白;而重组抗体中往往也同样存在来自于宿主(如大肠杆菌)的各类蛋白。因此,在建立特异性强、检测限低、线性范围广的免疫检测技术时,往往需要结合抗体纯化过程来实现[11-13]。对抗体进行纯化的方法很多,其中亲和层析技术应用最广泛。关于应用亲和层析技术对抗体进行纯化的研究,已有学者进行了深度的概述[14-16]。抗体亲和纯化效果主要取决于亲和层析柱上所固定的配体。基于A蛋白和G蛋白的抗体亲和纯化技术研究引用最广泛,除此之外,基于组氨酸、金属离子、植物凝集素等新型配体的亲和层析技术也同样被应用于抗体的纯化。然而,直接应用固相抗原进行相应抗体的亲和纯化无疑是最有效的方法,尤其是对多克隆抗血清而言。笔者所在的课题组前期合成了甲氧基有机磷农药通用半抗原,并进一步免疫了新西兰大白兔,从而获得了针对这类农药的广谱特异性抗体[17]。本研究拟在此基础上偶联通用半抗原至琼脂糖固相载体制备亲和层析柱,并进一步应用于抗血清的纯化。
1材料与方法
1.1材料与试剂
甲氧基有机磷农药广谱特异性抗体(兔血清)、甲氧基有机磷农药通用半抗原、通用半抗原与卵清蛋白偶联物(Hapten-OVA)等由笔者所在的实验室自行制备保存;碳二亚胺缩合剂99% 1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐(EDC·HCl)购自百灵威科技有限公司;氨基活化的琼脂糖凝胶(EAH 琼脂糖凝胶 4B)购自通用电气医疗集团;丙烯酰胺、甲叉双丙烯酰胺、过硫酸铵、四甲基乙二胺(TEMED)、四甲基联苯胺(TMB)等购自Sigma公司;30~200 ku 蛋白Marker购自北京全式金生物有限公司;HRP标记的羊抗兔抗体购自武汉博士德生物工程有限公司;马拉硫磷、乐果、稻丰散、亚胺硫磷、杀扑磷等农药标准品(99.9%)购自中国农业部农药检定所;其他试剂均为分析纯。
1.2仪器与设备
Agilent 1200型高效液相色谱仪、Agilent G6410A型三重四级杆串联质谱仪(配ESI离子源);DYY-31A 型稳压稳流电泳仪、微型垂直电泳槽(北京六一仪器厂);微量紫外可见分光光度计(通用电气医疗集团);MK2酶标仪、全自动洗板机(Thermo Fisher);其他实验室常规仪器设备。
1.3方法
1.3.1甲氧基有机磷农药通用半抗原免疫亲和柱的制备以EDC·HCl为偶联剂,采用碳二亚胺法将带有羧基活性基团的甲氧基有机磷农药通用半抗原与带有氨基活性基团的EAH 琼脂糖凝胶 4B 凝胶链接,反应原理如图1所示。取EAH 琼脂糖凝胶 4B 5 mL,用超纯水(pH值 4.5)和 0.5 mol/L NaCl 各交替洗涤3次;同时用5 mL 连接反应液(50% 甲醇,pH 值4.5)溶解10.0 mg 通用半抗原;然后将二者混合,于冰浴中缓慢振摇反应,反应前1 h 分10 次加入EDC 溶液至终浓度为0.1 mol/L;冰浴中反应过夜,将温度逐渐升高至室温,总反应时间为24 h。反应结束后,用0.1 mol/L 醋酸缓冲液(含0.5 mol/L NaCl,pH值 4.0)和0.1 mol/L Tris-HCl 缓冲液(含0.5 mol/L NaCl,pH值 8.0)交替洗涤连接产物各3次,最后用体积分数为50%的甲醇洗涤,并装填成 1 mL 的亲和柱备用。对照反应中不加EDC,采用液相色谱-串联质谱的选择离子监测模式(selective ion monitoring,SIM)测定反应后半抗原与副产物的量,进而判断反应是否顺利进行。
1.3.2甲氧基有机磷农药广谱特异性抗体的亲和纯化甲氧基有机磷农药广谱特异性抗体经饱和硫酸铵法初步纯化,
再用自制的通用半抗原免疫亲和柱进一步纯化。亲和纯化具体过程如下:以10 mL 结合缓冲液平衡亲和柱;加入1 mL经0.45 μm滤膜过滤的粗提抗体样品,用结合缓冲液洗涤至流出液中无蛋白检出;以4 mL 洗脱缓冲液洗脱目的抗体,并用加有中和缓冲液的小管收集;最后用5 mL 结合缓冲液洗涤亲和柱。纯化结束后,通过不连续体系非变性聚丙烯酰胺凝胶电泳(SDS-PAGE)鉴定纯化效果,间接非竞争ELISA测定抗体纯化后的活性。SDS-PAGE电泳操作过程参照相关试验手册。间接非竞争ELISA操作过程如下:(1)包被。用CBS缓冲液将Hapten-OVA包被原稀释至2 μg/mL后加于96孔板中,100 μL/孔,4 ℃过夜。(2)封闭。用PBST洗板3次,加入200 μL/孔封闭液(含2% OVA的PBS溶液),37 ℃孵育 1 h。(3)加样。用PBST洗板3次,将纯化后的抗体样品用PBS适当稀释后再加入微孔中,100 μL/孔,37 ℃孵育2 h。(4)加酶标二抗。用含2% OVA的PBS液将酶标二抗稀释 5 000 倍(工作浓度),100 μL/孔,37 ℃温浴1 h。(5)显色。加入TMB底物液100 μL/孔,显色15 min,再加入50 μL/孔浓度为 2 mol/L的 H2SO4快速终止反应,最后用酶标仪读取D450 nm。每个样品重复3个孔。
1.3.3抗体纯化前后的特异性和亲和力比较采用间接竞争ELISA鉴定纯化后抗体对马拉硫磷、乐果、稻丰散、亚胺硫磷、杀扑磷等甲氧基有机磷农药的反应活性,并与纯化前抗体的反应活性进行比较,以判定纯化过程对抗体广谱特异性的影响。先用Hapten-OVA包被原包被并用OVA封闭96孔板,然后加入纯化抗体和不同浓度的农药标准溶液进行竞争结合,后续加酶标二抗、显色等过程同前。计算纯化抗体对各种农药对象的半抑制浓度(IC50),并以马拉硫磷为基准计算交叉反应率。
2结果与分析
2.1甲氧基有机磷农药通用半抗原免疫亲和柱的制备
由偶联反应机理可知,随着反应的进行,反应体系中的半抗原逐渐消耗,而同时伴随着脲类副产物的产生。因此,试验中通过采用液相色谱-串联质谱(LC-MS)中的选择离子监测模式测定反应后半抗原与副产物的量,进而判断反应能否顺利进行。测定结果表明,反应结束后偶联体系中的半抗原([M+H]=231.0)的量显著少于对照体系,同时偶联体系中有大量副产物([M+H]=1742)产生,说明半抗原分子与固相载体偶联成功,经计算偶联效率约为60%。偶联小分子化合物至固相载体的过程在合成化学中相对比较成熟,有研究认为,在应用此类反应时往往只是直接反应,而对反应是否发生不进行监控[18]。本研究所采用的鉴定方法较简单有效,可为相关学者提供参考。
2.2甲氧基有机磷农药广谱特异性抗体的亲和纯化
将上述连接产物装填成1 mL 的亲和柱,用于甲氧基有机磷农药广谱特异性抗体的纯化。收集纯化过程中各步骤样品分别采用不连续体系的非变性SDS-PAGE 电泳和直接非竞争ELISA 进行纯度和活性鉴定。SDS-PAGE 电泳结果表明,广谱特异性抗体纯化效果良好(图2-a),并对样品纯化前后的体积和蛋白浓度进行计算,得到纯化产率约为78.5%。将各部分样品的蛋白浓度调为一致进行直接非竞争ELISA,结果显示,纯化后抗体的D450 nm略高于纯化前的样品,而纯化洗涤液的D450 nm较小(图2-b)。说明亲和纯化过程能够将一些低亲和力的抗体去除,而高亲和力的抗体能够保留下来。抗体纯化效果主要受洗涤液的类型、体积和流速等条件影响,本研究采用典型的洗涤条件进行抗体纯化,获得了较好的纯化效果。
2.3抗体纯化前后的特异性和亲和力
笔者所在的课题组前期研究结果表明,所用广谱特异性抗体能够识别马拉硫磷、乐果、稻丰散、亚胺硫磷、杀扑磷等一系列甲氧基有机磷农药。因此,本试验进一步鉴定了纯化后的抗体对上述农药的识别活性,并与纯化前进行比较,结果如表1所示。纯化后,广谱特异性抗体对乐果的交叉反应率略变大,而对稻丰散、亚胺硫磷和杀扑磷的交叉反应率有所减小。可能因为在纯化过程中去除的低亲和力抗体主要是特异识别这3种对象的。但总体而言,经过纯化后的抗体依然能够识别上述5种甲氧基有机磷农药,并且其IC50比纯化前更低。这说明纯化后的抗体对这些农药的亲和力有所增强,能够建立起更灵敏的检测方法。
3结论
本研究成功地将甲氧基有机磷农药通用半抗原偶联至固相载体中制备成亲和纯化柱,并应用其对甲氧基有机磷农药抗血清进行了亲和纯化。经鉴定,亲和纯化效果良好,纯化产率约为78.5%;纯化后抗体的亲和活性有所增强,而其对马拉硫磷、乐果、稻丰散、亚胺硫磷、杀扑磷等农药对象的交叉反应性未受影响。
参考文献:
[1]Jiang H,Fan M T. Multi-analyte immunoassay for pesticides:a review[J]. Analytical Letters,2012,45(11):1347-1364.
[2]Wang L M,Zhang Q,Chen D F,et al. Development of a specific Enzyme-linked immunosorbent assay(ELISA)for the analysis of the organophosphorous pesticide fenthion in real samples based on monoclonal antibody[J]. Analytical Letters,2011,44(9):1591-1601.
[3]Fan M T,He J. Pesticide immunoassay[M]//Stoytcheva M.Pesticides-strategies for pesticides. Croatia:InTech,2011:293-314.
[4]Yuan L P,Liu B,Yin K D,et al. Biotin-streptavidin-enhanced enzyme-linked immunosorbent assay for the determination of parathion-methyl in vegetables[J]. Analytical Letters,2013,46(7):1084-1096.
[5]Liu B,Ge Y,Zhang Y,et al. Production of the class-specific antibody and development of direct competitive ELISA for multi-residue detection of organophosphorus pesticides[J]. Food and Agricultural Immunology,2012,23(2):157-168.
[6]武中平,徐春祥,高巍,等. 酶联免疫分析法及其在食品农药残留检测中的应用[J]. 江苏农业科学,2007(1):198-201.
[7]Wang R,Wang Z H,Yang H,et al. Highly sensitive and specific detection of neonicotinoid insecticide imidacloprid in environmental and food samples by a polyclonal antibody-based enzyme-linked immunosorbent assay[J]. Journal of the Science of Food and Agriculture,2012,92(6):1253-1260.
[8]Jiang J,Zhang D H,Zhang W,et al. Preparation,identification,and preliminary application of monoclonal antibody against pyrethroid insecticide fenvalerate[J]. Analytical Letters,2010,43(17):2773-2789.
[9]Fu Y Y,Li Z G,Yang Y W,et al. Isolation of single chain variable fragments against six esters of pyrethrins by subtractive phage display[J]. Bioscience Biotechnology and Biochemistry,2009,73(7):1541-1549.
[10]贺江,梁颖,樊明涛,等. 噬菌体展示技术制备甲氧基有机磷农药抗独特型抗体[J]. 分析化学,2011,39(2):178-182.
[11]Wang H,Liu X X,He Y S,et al. Expression and purification of an anti-clenbuterol single chain Fv antibody in Escherichia coli[J]. Protein Expression and Purification,2010,72(1):26-31.
[12]Yi Y,Wang Z H,Li M,et al. Preparation and purification of monoclonal antibodies against chloramphenicol[J]. Cytotechnology,2012,64(2):157-163.
[13]Parra J,Mercader J V,Agulló C,et al. Generation of anti-azoxystrobin monoclonal antibodies from regioisomeric haptens functionalized at selected sites and development of indirect competitive immunoassays[J]. Analytica Chimica Acta,2012,715:105-112.
[14]Huse K,Bhme H J,Scholz G H. Purification of antibodies by affinity chromatography[J]. Journal of Biochemical and Biophysical Methods,2002,51(3):217-231.
[15]Low D,Oleary R,Pujar N S.Future of antibody purification[J]. Journal of Chromatography B,2007,848(1):48-63.
[16]Ayyar B V,Arora S,Murphy C,et al. Affinity chromatography as a tool for antibody purification[J]. Methods,2012,56(2):116-129.
[17]Liang Y,Liu X J,Liu Y,et al. Synthesis of three haptens for the class-specific immunoassay of O,O-dimethyl organophosphorus pesticides and effect of hapten heterology on immunoassay sensitivity[J]. Analytica Chimica Acta,2008,615(2):174-183.
[18]Pera J,Undas A,Twardowski T,et al. Purification of antibodies against N-homocysteinylated proteins by affinity chromatography on nomega-homocysteinyl-aminohexyl-agarose[J]. Journal of Chromatography B,2004,807(2):257-261.
[7]Wang R,Wang Z H,Yang H,et al. Highly sensitive and specific detection of neonicotinoid insecticide imidacloprid in environmental and food samples by a polyclonal antibody-based enzyme-linked immunosorbent assay[J]. Journal of the Science of Food and Agriculture,2012,92(6):1253-1260.
[8]Jiang J,Zhang D H,Zhang W,et al. Preparation,identification,and preliminary application of monoclonal antibody against pyrethroid insecticide fenvalerate[J]. Analytical Letters,2010,43(17):2773-2789.
[9]Fu Y Y,Li Z G,Yang Y W,et al. Isolation of single chain variable fragments against six esters of pyrethrins by subtractive phage display[J]. Bioscience Biotechnology and Biochemistry,2009,73(7):1541-1549.
[10]贺江,梁颖,樊明涛,等. 噬菌体展示技术制备甲氧基有机磷农药抗独特型抗体[J]. 分析化学,2011,39(2):178-182.
[11]Wang H,Liu X X,He Y S,et al. Expression and purification of an anti-clenbuterol single chain Fv antibody in Escherichia coli[J]. Protein Expression and Purification,2010,72(1):26-31.
[12]Yi Y,Wang Z H,Li M,et al. Preparation and purification of monoclonal antibodies against chloramphenicol[J]. Cytotechnology,2012,64(2):157-163.
[13]Parra J,Mercader J V,Agulló C,et al. Generation of anti-azoxystrobin monoclonal antibodies from regioisomeric haptens functionalized at selected sites and development of indirect competitive immunoassays[J]. Analytica Chimica Acta,2012,715:105-112.
[14]Huse K,Bhme H J,Scholz G H. Purification of antibodies by affinity chromatography[J]. Journal of Biochemical and Biophysical Methods,2002,51(3):217-231.
[15]Low D,Oleary R,Pujar N S.Future of antibody purification[J]. Journal of Chromatography B,2007,848(1):48-63.
[16]Ayyar B V,Arora S,Murphy C,et al. Affinity chromatography as a tool for antibody purification[J]. Methods,2012,56(2):116-129.
[17]Liang Y,Liu X J,Liu Y,et al. Synthesis of three haptens for the class-specific immunoassay of O,O-dimethyl organophosphorus pesticides and effect of hapten heterology on immunoassay sensitivity[J]. Analytica Chimica Acta,2008,615(2):174-183.
[18]Pera J,Undas A,Twardowski T,et al. Purification of antibodies against N-homocysteinylated proteins by affinity chromatography on nomega-homocysteinyl-aminohexyl-agarose[J]. Journal of Chromatography B,2004,807(2):257-261.
[7]Wang R,Wang Z H,Yang H,et al. Highly sensitive and specific detection of neonicotinoid insecticide imidacloprid in environmental and food samples by a polyclonal antibody-based enzyme-linked immunosorbent assay[J]. Journal of the Science of Food and Agriculture,2012,92(6):1253-1260.
[8]Jiang J,Zhang D H,Zhang W,et al. Preparation,identification,and preliminary application of monoclonal antibody against pyrethroid insecticide fenvalerate[J]. Analytical Letters,2010,43(17):2773-2789.
[9]Fu Y Y,Li Z G,Yang Y W,et al. Isolation of single chain variable fragments against six esters of pyrethrins by subtractive phage display[J]. Bioscience Biotechnology and Biochemistry,2009,73(7):1541-1549.
[10]贺江,梁颖,樊明涛,等. 噬菌体展示技术制备甲氧基有机磷农药抗独特型抗体[J]. 分析化学,2011,39(2):178-182.
[11]Wang H,Liu X X,He Y S,et al. Expression and purification of an anti-clenbuterol single chain Fv antibody in Escherichia coli[J]. Protein Expression and Purification,2010,72(1):26-31.
[12]Yi Y,Wang Z H,Li M,et al. Preparation and purification of monoclonal antibodies against chloramphenicol[J]. Cytotechnology,2012,64(2):157-163.
[13]Parra J,Mercader J V,Agulló C,et al. Generation of anti-azoxystrobin monoclonal antibodies from regioisomeric haptens functionalized at selected sites and development of indirect competitive immunoassays[J]. Analytica Chimica Acta,2012,715:105-112.
[14]Huse K,Bhme H J,Scholz G H. Purification of antibodies by affinity chromatography[J]. Journal of Biochemical and Biophysical Methods,2002,51(3):217-231.
[15]Low D,Oleary R,Pujar N S.Future of antibody purification[J]. Journal of Chromatography B,2007,848(1):48-63.
[16]Ayyar B V,Arora S,Murphy C,et al. Affinity chromatography as a tool for antibody purification[J]. Methods,2012,56(2):116-129.
[17]Liang Y,Liu X J,Liu Y,et al. Synthesis of three haptens for the class-specific immunoassay of O,O-dimethyl organophosphorus pesticides and effect of hapten heterology on immunoassay sensitivity[J]. Analytica Chimica Acta,2008,615(2):174-183.
[18]Pera J,Undas A,Twardowski T,et al. Purification of antibodies against N-homocysteinylated proteins by affinity chromatography on nomega-homocysteinyl-aminohexyl-agarose[J]. Journal of Chromatography B,2004,807(2):257-261.