高万里,王宗秀,王对兴,李春麟
1.中国地质科学院地质力学研究所/中国地质科学院页岩油气评价重点实验室,北京 1000812.中国地质大学(北京)地球科学与资源学院,北京 1000833.石家庄经济学院资源学院,石家庄 050031
浙东南晚中生代花岗岩的锆石U-Pb年代学、地球化学及其地质意义
高万里1,王宗秀1,王对兴2,3,李春麟1
1.中国地质科学院地质力学研究所/中国地质科学院页岩油气评价重点实验室,北京 1000812.中国地质大学(北京)地球科学与资源学院,北京 1000833.石家庄经济学院资源学院,石家庄 050031
浙东南地区(江绍断裂带东南)是位于华南东北部濒太平洋的沿海地区,是理解古太平洋板块俯冲作用的重要地区。本次研究选取岩坦、梁弄、新铺3个典型的岩体进行岩相学、锆石年代学和地球化学研究,并结合前人对该地区花岗岩体的研究结果,探讨古太平洋板块俯冲与岩浆活动之间的关系。LA-ICP-MS锆石U-Pb定年结果显示:新铺花岗岩的年龄为(145.8±1.4) Ma,表明浙东南地区晚侏罗世仍存在岩浆活动的记录;梁弄花岗岩和岩坦花岗岩的形成时代分别为(106.2±1.4)和(94.7±1.4) Ma,代表早白垩世晚期典型的岩浆活动。地球化学特征上,3个岩体均富SiO2、Al2O3,具有高的A/CNK,属高钾钙碱性花岗岩;稀土元素球粒陨石标准化分布型式图中具显著的负Eu异常,稀土元素总量偏低;微量元素原始地幔标准化分布型式图中富集Rb、Cs、U、Th、Pb,亏损Ba、Sr、Nb、Ti,为典型的壳源型花岗岩。结合已有的资料,本次研究表明,新铺花岗岩形成在由侏罗纪挤压向白垩纪伸展转变的构造背景下,梁弄花岗岩和岩坦花岗岩形成在岩石圈减薄的伸展构造背景下,它们形成均受到了古太平洋板块俯冲作用的影响。
浙东南;晚中生代;花岗岩;LA-ICP-MS;地球化学;古太平洋板块
中国东南部晚中生代以来发生了大规模的火山活动和岩浆侵入,构成举世瞩目的中生代火山-侵入杂岩带,是濒太平洋地区一个宏伟的构造-岩浆带的组成部分[1]。前人曾对该区大规模岩浆活动的地质背景进行了深入研究,并分别提出了几种解释这一岩浆活动的动力学模型,主要分为两类:板内活动作用,诸如陆陆碰撞模型[2],大陆拉张裂解模型[3-7],地幔柱模型[8-10];古太平洋板块俯冲模型,包括平板俯冲模型[11-12],俯冲角度变化模型[13-16]。随着越来越多的地质数据的累积,太平洋板块俯冲作用逐渐被人们所接受。然而前人所建立的俯冲模型中均认为古太平洋板块的漂移方向是北西向;孙卫东[17-18]研究则表明,太平洋板块在地质历史上曾发生过多次的转向。其中,在125~140 Ma,其漂移方向显示为南西向。而且,太平洋洋壳年龄展布(130~170 Ma)也显现出自北向南逐渐变老的特征[19],显示太平洋当时漂移方向应该总体向南。因此,古太平洋板块的俯冲作用与华南晚中生代岩浆活动的关系仍需进一步研究。
浙东南地区(江绍断裂带东南)是位于华南东北部濒太平洋的沿海地区,是理解古太平洋板块俯冲作用的重要地区。浙东南地区晚中生代岩浆活动的规律可以为理解古太平洋板块俯冲作用提供关键线索。笔者以浙东南地区晚中生代花岗岩为研究对象,在对区内花岗岩已有年龄全面甄别、清理的基础上,选取区内梁弄、岩坦和新铺3个岩体进行岩相学、锆石U-Pb年代学及岩石地球化学研究(取样位置见图1)。并结合区内已有的花岗岩数据,探讨岩浆活动的构造背景及与古太平洋板块俯冲之间的关系。
中国东南部出露了较大规模的前震旦纪变质岩层,保留有较多的古构造形迹[20]。其中前震旦纪的变质基底以面状分布的片岩、片麻岩为主,构成中国东南部最古老的陆壳基底之一,称为华夏古陆[21]。中生代特别是晚中生代以来,该区发生了大规模的岩浆侵入与火山活动,形成了巨厚的火山沉积地层[6, 13]。除在江绍断裂带附近出露少量的元古宙基底之外,区内大部分为晚中生代火山沉积岩所覆盖,岩性以流纹岩、凝灰岩为主,有少量的玄武岩、安山岩等中基性岩;晚中生代侵入岩主要以花岗岩类为主,中基性岩主要以包体的形式出现。同时区内零星分布一些晚白垩世-新生代的盆地。
岩坦岩体位于永嘉县岩坦镇,岩体出露面积约56 km2。岩体主要侵位于上侏罗统诸暨组与黄山组中。前人的区域地质调查中,认为其属于燕山晚期第三阶段岩浆侵入的产物。岩性主要为钾长花岗岩与正长花岗岩。样品DY11-79采自岩坦镇,坐标为N28°27′05″,E120°43′22″。岩性为细中粒正长花岗岩,细中粒花岗结构,局部文象结构,块状构造。岩石由斜长石、钾长石、石英、黑云母组成。斜长石呈半自形板状,杂乱分布,粒度一般为0.2~2.0 mm,少部分为2.0~5.0 mm;核部多具绢云母化、硅化、不均匀高岭土化等,少见环带构造。钾长石呈他形粒状,杂乱分布,粒度一般为2.0~5.0 mm,少部分为0.2~2.0 mm;具高岭土化等,晶内嵌布少量斜长石等小包体,部分与石英呈文象状交生。石英呈他形粒状,填隙状分布,粒度一般为0.2~2.0 mm,少部分为2.0~3.0 mm;黑云母呈叶片状、星散状分布,粒度一般为0.15~1.5 mm,少部分绿泥石化(图2a、b)。
梁弄岩体位于余姚县梁弄镇,受北北东向断裂的控制,为一个由燕山晚期和喜马拉雅期花岗岩构成的复合岩体,面积88.19 km2。岩体侵入于下白垩统和上侏罗统中,又被上新统嵊县群玄武岩所覆盖。样品DY11-137采自梁弄镇,采样坐标为N29°45′54″,E120°59′36″,为燕山晚期侵入岩。岩性为灰白色石英闪长岩,块状构造,中粒等粒结构,矿物成分主要为斜长石(55%~65%)、角闪石(15%~25%)、钾长石(10%)、石英(5%)(图2c、d)。
新铺岩体位于遂昌县北部双溪口镇新铺村,呈北东向展布。该处为燕山早晚期侵入岩构成的复合岩体,岩体北部侵入到元古宙八都群中,南部为苏村晶洞钾长花岗岩侵入。样品DY11-158采自新铺岩体的北部,采样坐标为N28°47′17″,E119°19′24″。岩性为斑状钾长花岗岩,岩石主要由斑晶和基质组成,斑晶主要为钾长石,粒度大小为0.5 mm左右,体积分数约15%;基质主要为长英质矿物(图2e、f)。
锆石按常规方法分选,最后在双目镜下挑纯;将分选锆石用双面胶粘在载玻片上,罩上PVC环,然后将环氧树脂和固化剂进行充分混合后注入PVC环中,待树脂充分固化后,将样品靶从载玻片上剥离,并对其进行打磨和抛光;然后对靶上的样品进行反射光和透射光照相,以及阴极发光(CL)照相(图3)。3个花岗岩样品的CL图像分析均在中国地质科学院国土资源部成矿作用与资源评价重点实验室完成。锆石的Th、U、Pb同位素分析在国土资源部成矿作用与资源评价重点实验室采用激光烧蚀电感耦合等离子质谱仪(LA-MC-ICP-MS)完成。采用的仪器、相关参数及测试流程参见文献[22]。分析结果应用ICPMSDatacal程序[23]和Ludwig的Isoplot程序进行数据处理[24],并采用208Pb校正法进行普通铅校正[25]。实验分析结果见表1,测试数据的误差均为1σ。
进行定年的锆石以透明为主,局部半透明,裂纹不发育,无核或核部小。从锆石CL图像(图3)上可以看出,3个岩体锆石多为长柱状晶体,长宽比为1∶1至3∶1,颗粒大小为80~215 μm,锆石的Th/U为0.71~2.99。CL图像显示较弱,部分锆石发育锆石核,呈现典型的核幔结构。所有样品均发育典型的振荡环带结构,显示锆石均为典型的岩浆锆石。测点都选择在韵律环带结构清晰的部位,尽可能避开核部。本次研究中,主要根据206Pb/238U来确定岩体的形成时间。所有锆石U-Pb年代学测定结果列于表1,图3为年龄谐和图。
岩坦正长花岗岩(DY11-79)锆石Th/U为1.74~2.99,13颗锆石的206Pb/238U表面年龄比较一致,为92.43~101.08 Ma。在协和曲线上,具有较好的群落性,13个测点的206Pb/238U的加权平均年龄为(94.7±1.4)Ma,MSWD=2.9,代表岩体的结晶年龄。
梁弄石英闪长岩(DY11-137)的15颗锆石进行了同位素分析,除去1个测点可能由于Pb丢失的缘故偏离协和曲线外,其余14个测点均落在协和曲线上,具有较好的群落性。206Pb/238U表面年龄比较一致,为100.00~108.57 Ma,14个测点的206Pb/238U的加权平均年龄为(106.2±1.4)Ma,MSWD=1.4,代表岩体的结晶年龄。
新铺钾长花岗岩(DY11-158)的16颗锆石进行了同位素分析,除去1个测点明显偏离协和曲线外,其余15个测点均具有较好的群落性。206Pb/238U表面年龄比较一致,为140.51~150.10 Ma,15个测点的206Pb/238U加权平均年龄为(145.8±1.4)Ma,MSWD=0.84,代表岩体的结晶年龄。
图1 浙东南花岗岩分布图及取样点位置图Fig.1 Map of granite distribution and sample location in southeastern Zhejiang
a、b.岩坦正长花岗岩;c、d.梁弄石英闪长岩;e、f.新铺斑状钾长花岗岩。图2 样品的显微特征照片Fig.2 Photomicrographs of the samples
图3 代表性锆石阴极发光图像与锆石U-Pb年龄协和图Fig.3 Representative zircon CL images with analyzed spots and zircon U-Pb concordia diagram
点位wB/10-6ThUTh/U同位素比值207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ年龄/Ma207Pb/206Pb206Pb/238UDY11-7979.1146.5277.011.900.04900.00250.09880.00510.01460.0003150.09±115.7393.59±1.7979.251.6629.721.740.05640.00520.11720.01340.01500.0005477.82±202.696.02±3..2179.3220.84119.481.850.04830.00400.10200.00930.01440.0001122.31±175.992.43±0.7179.497.5942.922.270.04710.00420.09900.00900.01530.000453.80±196.2797.95±2.5079.5223.65114.171.960.05330.00260.11190.00540.01530.0003338.95±111.197.77±1.9879.6629.93249.592.520.05140.00100.10540.00280.01490.0002261.18±46.2995.17±1.2079.7389.70194.932.000.04760.00140.09650.00300.01470.000179.72±68.5194.29±0.7679.8140.6249.062.870.05230.00300.10490.00610.01460.0003298.21±134.2493.55±1.7279.9149.7565.042.300.04860.00250.10580.00640.01580.0004127.87±72.22101.08±2.8079.10382.18212.361.800.05280.00180.10790.00270.01490.0002320.43±79.6295.23±1.4379.11299.51100.172.990.04870.00150.10270.00320.01530.0002200.08±74.9998.16±1.4879.12118.8966.311.790.04820.00340.09860.00830.01480.0005109.35±224.0494.64±3.4779.1368.6933.352.060.04650.00340.10040.00730.01570.000333.43±157.39100.51±2.00DY11-137137.159.9143.401.380.05130.00460.11070.01000.01570.0004253.77±211.09100.22±2.29137.246.5631.041.500.05580.00620.12870.01790.01670.0010442.64±251.82106.54±6.50137.368.8559.691.150.05330.00470.11860.00990.01640.0007342.65±199.98104.64±4.50137.4102.4083.331.230.04770.00120.10430.00280.01600.000283.43±61.11102.10±1.55137.568.5453.921.270.05200.00250.12060.00580.01700.0004287.10±107.39108.47±2.49137.6106.4981.691.300.05020.00150.11650.00350.01690.0003211.19±100.91108.25±1.69137.759.9360.171.000.05430.00340.11500.00880.01560.0008388.94±140.73100.00±5.28137.861.8353.571.150.05120.00280.11670.00590.01660.0003250.07±125.91106.32±1.87137.9154.69110.431.400.05130.00120.11790.00320.01670.0003253.77±53.69106.79±1.65137.10184.63162.511.140.04880.00090.11170.00240.01670.0003138.98±42.59106.50±1.66137.11320.18149.362.140.05210.00090.12110.00200.01700.0002287.10±34.36108.57±1.22137.1257.3648.861.170.04830.00180.11140.00430.01670.0002122.31±85.18106.86±1.50137.1373.4449.051.500.05950.00330.12880.00800.01590.0006583.36±122.21101.57±3.93137.14116.3167.641.720.05130.00170.11660.00410.01650.0002253.77±75.91105.64±1.44137.1592.0285.681.070.05020.00180.11560.00580.01660.0004211.19±81.47106.35±2.69DY11-158158.1152.69172.180.890.05130.00060.15830.00300.02240.0004253.77±27.28143.00±2.22158.237.6750.180.750.05150.00130.16690.00550.02360.0005261.18±54.62150.10±3.43158.3139.9373.361.910.04820.00110.15250.00400.02300.0004122.31±51.85146.50±2.74158.439.2338.641.020.05090.00200.16240.00700.02320.0006238.96±88.88147.87±3.58158.5255.61286.990.890.04890.00270.15310.02050.02250.0018142.68±162.02143.56±11.39
表1(续)
将全岩地球化学样品破碎成<1 cm的岩屑,从中挑选出200 g新鲜无蚀变、无晚期岩脉的岩屑,用1 mol/L的HCl溶液浸泡,去除表面污染,然后用去离子水反复洗净,烘干,用刚玉板小型鄂式破碎机细碎,最后用玛瑙球磨机磨至约200目。样品的主要元素及痕量元素(稀土元素除外)在中国地质科学院地球物理与地球化学研究所用X荧光光谱法测定,稀土元素用电感耦合等离子体发射光谱(ICP-AES)测定,轻稀土元素(La、Ce、Pr、Nd、Sm)相对标准误差RSD<5,重稀土元素(Eu-Lu)相对标准偏差<10%。
3.1 主量元素
主量元素、微量元素如表2所示。3个岩体的花岗岩具有高SiO2、Al2O3、K2O,低MgO、CaO、P2O5特征:w(SiO2)为73.28%~75.79%,w(Na2O+K2O)为8.39%~9.46%;w(K2O)>w(Na2O),K2O/Na2O为1.13~1.57,在图4a上落入高钾钙碱性系列范围;A/CNK=1.05~1.15,铝饱和指数高,在图4b上基本都落入偏铝质-过铝质区域,属于准铝质或弱过铝质高钾钙碱性花岗岩。
3.2 微量元素特征
由稀土元素球粒陨石标准化分布型式图(图5a)可知,3个岩体的稀土元素总量(∑REE)为(183.43~247.24)×10-6,富集轻稀土,LREE/HREE为1.17~6.64,(La/Yb)N=2.09~18.95,其中轻稀土分馏较重稀土更为显著;(La/Sm)N和(Gd/Yb)N值分别为2.31~7.57和0.65~1.51,铕负异常明显,其中尤以新铺花岗岩(δEu=0.07)显著,指示成岩过程中经历了明显的斜长石分离结晶。微量元素原始地幔标准化分布型式图(图5b)上,3个岩体基本上富集Rb、Cs、Th、U、Pb,明显亏损Nb、Ba、Sr、Ti,属于低Ba、Sr花岗岩。Rb、Ba、Sr、Ti质量分数的变化主要受造岩矿物控制,Rb升高和Sr、Ba的降低是钾长石和斜长石、黑云母分离结晶造成的,Ti的负异常表明它们经历了钛铁矿的分离结晶作用。
4.1 岩石成因
新铺、梁弄和岩坦岩体的主量元素特征显示,它们均为富硅(73.28%~75.79%)、富铝(12.81%~13.64%)、富碱(w(Na2O+K2O)=8.39%~9.46%),钾大于钠(K2O/NaO=1.13~1.57)。稀土元素均呈现“海鸥”式的分配模式,岩坦岩体与梁弄岩体La/Yb=10.08~18.95,比新铺岩体(La/Yb=2.09)明显偏高,显示出更明显的轻重稀土元素分馏。铕负异常明显,岩坦岩体及梁弄岩体δEu为0.52~0.54,而新铺花岗岩δEu=0.07更为显著,指示其源区有稳定的斜长石存在。微量元素特征为,富集大离子亲石元素(Cs、Rb、K),亏损高场强元素(Nb、Ti、P),表明这3个岩体均为高分异I型花岗岩或壳源型花岗岩。
表2 岩坦、梁弄及新铺花岗岩的主量元素及微量元素成分
注:ALK=w(Na2O)+w(K2O);A/CNK=w(Al2O3)/w(CaO+Na2O+K2O);δEu=(Eu/0.735)/(0.5(Sm/0.195+Gd/0.259));DI为分异指数。主量元素质量分数单位为%,微量元素质量分数单位为10-6。
1-7源自文献[26-32],8源自本文实测;w(K2O)-w(SiO2)底图据文献[33],A/CNK-A/NK底图据文献[34]。a.w(K2O)-w(SiO2)图解; b.A/CNK-A/NK图解。图4 浙东南晚中生代花岗质岩石分类图解Fig.4 Classification diagram for Late Mesozoic granities from southeastern Zhejiang
球粒陨石标准值源自文献[35],原始地幔标准值源自文献[36];数据来源同图4。图5 浙东南花岗质岩石稀土元素球粒陨石标准化配分图(a)及原始地幔标准化微量元素蛛网图(b)Fig.5 Chondrite-normalized REE patterns (a)and primitive mantle normalized element spider diagram(b) for granitic rocks from southeastern Zhejiang
a底图据文献[37];b底图据文献[38]。图6 岩坦、新铺和梁弄岩体的Rb/Ba-Rb/Sr图解(a)及A/MF-C/MF图解(b)Fig.6 Rb/Ba-Rb/Sr (a) and A/MF-C/MF (b) diagrams of the Yantan, Xinpu and Liangnong granites
在不相容元素比值上,梁弄岩体Rb/Nb值为17.79,高于岩坦岩体(7.23)和新铺岩体(6.35),均大于全壳平均值(5.36),表明它们主要为壳源组分熔融形成的。岩坦岩体的Nb/Ta值为16.03,高于新铺岩体(8.86)和梁弄岩体(9.15),指示其成岩过程中可能有更多的地幔物质参与。关于源区物质成分特征,在Rb/Sr-Rb/Ba图解上(图6a),新铺岩体投影于右上方的富黏土源岩区域内,而梁弄岩体及岩坦岩体投影于砂质源岩区域内;在A/MF-C/MF图解上(图6b),它们则落入了变质杂砂岩的部分熔融区域内,而新铺岩体则落入区域外,这表明新铺岩体的成岩过程中有更多地壳物质的参与。
4.2 地质意义
锆石LA-ICP-MS U-Pb年龄分析表明,新铺钾长花岗岩的形成时代为(145.8±1.4)Ma,这与广山岩体花岗斑岩((147.2±1.7)Ma),栅溪岩体黑云母花岗岩((150±2.6)Ma)[39]以及在浙西北发现的淳安开岭角岩体(151 Ma)和里陈家岩体(148 Ma)[40]等形成时代一致,均属于晚侏罗世晚期岩浆活动的产物。新铺花岗岩(145.8±1.4)Ma的年龄表明在浙江东南部燕山期岩浆演化过程中,没有缺失侏罗纪侵入活动的记录。此后,位于浙东南地区的苏村钾长花岗岩侵位于133 Ma[41],洪公铝质A型花岗岩侵位于124 Ma[32],均形成在早白垩世伸展构造背景下。而新铺花岗岩地球化学特征与产于由挤压向拉张转变过程中形成的富钾钙碱性花岗岩(KCG)特征有相似之处[42];前人大量的地质研究表明,华南乃至整个中国东南部燕山期区域构造经历了从侏罗纪挤压到白垩纪拉张的构造环境,伴随有一系列花岗岩岩浆活动[13, 43-45]。邢光福等[46]通过区域地质构造及地层对比研究认为,华南中生代构造体制转折结束于晚侏罗世( 149.8~142.3 Ma),这表明新铺花岗岩可能形成于由挤压向伸展转变的过程中。
syn-COLG.同碰撞花岗岩;WPG.板内花岗岩;VAG.火山弧花岗岩;ORG.洋脊花岗岩。底图据文献[53];数据来源同图4。图7 浙东南晚中生代花岗岩构造环境判别图Fig.7 Tectonic discrimination diagrams of Late Mesozoic granites from southeastern Zhejiang
梁弄石英闪长岩与岩坦正长花岗岩LA-ICP-MS锆石U-Pb年代分别为(106.2±1.4)Ma和(94.7±1.4)Ma,与黄岩望海岗岩体[27]、曹门碱性花岗岩体[28]、石平川花岗岩体[30]等形成时代一致,为早白垩世晚期岩浆活动的产物。该时期花岗岩常与A型花岗岩共生,形成特征的I-A型花岗岩体[47],均形成在伸展构造背景下[5]。除了I-A型花岗岩组合之外(如舟山普陀山,桃花岛[47],瑶坑碱性花岗岩[31]),该区还发育双峰式的火山岩(玄武岩-流纹岩)及双峰式侵入岩(辉长岩-花岗岩),它们共同构成了陆缘伸展型构造火成岩组合[48]。Li[5]的研究表明,该时期形成的花岗岩与岩石圈的幕式减薄有关,地球化学特征显示出弧岩浆岩的特征,暗示岩石圈的减薄与板块俯冲有关。
东南沿海地区晚中生代普遍出现A型花岗岩或碱性岩,一系列NNE、NE向的断裂、盆地的展布,浅成镁铁质岩脉的侵入均表明晚中生代中国东南部整体上处在伸展拉张的构造环境下[5-7, 49-51]。但是关于伸展性质仍然存在争论,目前争论的焦点在于该时期的伸展属于板内伸展还是弧后伸展。Li[5]曾指出华南白垩纪钙碱性岩浆活动与岩石圈伸展引发的减压熔融作用有关,与俯冲作用无关;Li等[11]用平板俯冲模型来解释华南1 300 km岩浆活动,提出190~90 Ma的岩浆活动与俯冲板片的塌陷和拆沉作用有关[12]。与此相反,一些学者基于晚中生代岩浆岩带呈北东走向展布,且岩浆岩年龄有从内陆至沿海逐渐变年轻的趋向这一基本事实[13, 52],提出用古太平洋板块俯冲来解释华南晚中生代的岩浆活动,认为中国东南部晚中生代处在活动大陆边缘的构造环境下。与典型的活动大陆边缘花岗岩主要落入火山弧花岗岩(VAG)区域不同,浙东南花岗岩在构造环境图解(图7)上大多跨越火山弧(VAG)及板内花岗岩(WPG)区域,这一特征与大陆弧后盆地伸展环境下形成的花岗岩相似[54]。Gilder等[4]在研究中国裂谷分布时曾指出,中国东部中生代的伸展环境是伴随古太平洋板块向华南大陆之下俯冲消减作用发生的,这一时期的伸展环境主要是由于弧后扩张作用所导致的。毛建仁等[55]认为燕山晚期整个中国东部主要受到库拉板块向欧亚大陆北北西向俯冲的太平洋构造体系控制,处于活动大陆边缘及其弧后扩张盆地的构造环境下;随着时代的更新,大陆岩石圈不断伸展-减薄,扩张作用不断增强,由早期库拉板块向欧亚大陆俯冲碰撞-伸展走滑演化为晚期的伸展-裂解。舒良树等[56]通过对比北美西部与中国东南部盆岭构造的异同,认为中国东南部与北美西部中、新生代时期均受太平洋构造体制制约,早白垩前后俯冲角度的变化导致弧后进一步伸展塌陷,岩石圈减薄。刘国兴等[57]对华南东南沿海地区的岩石圈电性结构研究也发现,东部地壳由于太平洋板块的俯冲作用发生过剧烈减薄。因此,中国东南部晚中生代花岗岩形成在古太平洋板块俯冲导致的弧后拉张背景、岩石圈减薄的背景下。
1)新铺、梁弄和岩坦岩体的主量元素特征显示,它们均为弱过铝质-准铝质的高钾钙碱性花岗岩,分异演化程度高(DI=94.58%~97.84%);稀土元素均呈现“海鸥”式的分配模式,铕负异常明显,富集大离子亲石元素(Cs、Rb、K),亏损高场强元素(Nb、Ti、P),表明这3个岩体均为壳源型花岗岩。
2)LA-ICP-MS锆石U-Pb测年结果表明:新铺花岗岩年龄为(145.8±1.4)Ma,表明浙东南存在晚侏罗晚期的岩浆活动,其形成于侏罗纪挤压向白垩纪伸展转变的构造背景下;梁弄和岩坦花岗岩的结晶年龄分别为(106.2±1.4)Ma和(94.7±1.4)Ma,代表浙东南早白垩世晚期典型的岩浆活动,二者均形成在伸展构造背景下。整体上,新铺、岩坦和梁弄岩体均形成在古太平洋板块俯冲影响的岩石圈拉张减薄构造背景下。
[1] 王德滋,周金城. 我国花岗岩研究的回顾与展望[J]. 岩石学报,1999, 15(2): 161-169. Wang Dezi, Zhou Jincheng. Look Back and Look Forward to Granite Research[J]. Acta Petrologica Sinica, 1999, 15(2):161-169.
[2] Hsü K J, Li J, Chen H, et al. Tectonics of South China: Key to Understanding West Pacific Geology[J]. Tectonophysics,1990, 183: 9-39.
[3] Gilder S A, Gill J, Coe R S, et al. Isotopic and Paleomagnetic Constraints on the Mesozoic Tectonic Evolution of South China[J]. Journal of Geophysical Research,1996, 101(B7): 16137-16154.
[4] Gilder S A, Keller G R, Luo M, et al. Eastern Asia and the Western Pacific Timing and Spatial Distribution of Rifting in China[J]. Tectonophysics,1991, 197: 225-243.
[5] Li X H. Cretaceous Magmatism and Lithospheric Extension in Southeast China[J]. Journal of Asian Earth Sciences,2000, 18: 293-305.
[6] Li X H, Chen Z, Liu D, et al. Jurassic Gabbro-Granite-Syenite Suites from Southern Jiangxi Province, SE China: Age, Origin, and Tectonic Significance[J]. International Geology Review, 2003, 45: 898-921.
[7] Li X H, Li Z X, Li W X, et al. U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I-and A-Type Granites from Central Guangdong, SE China: A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab?[J]. Lithos,2007, 96: 186-204.
[8] 毛景文,王志良. 中国东部大规模成矿时限及其动力学背景的初步探讨[J]. 矿床地质,2000, 19(4): 289-296. Mao Jingwen, Wang Zhiliang.Time Limits of Large-Scale Mineralization in East China and Its Dynamic Background[J]. Mineral Deposits,2000, 19(4): 289-296.
[9] 毛建仁,陶奎元,邢光福,等. 中国东南大陆边缘中新生代地幔柱活动的岩石学记录[J]. 地球学报, 1999, 20(3): 253-258. Mao Jianren, Tao Kuiyuan, Xing Guangfu, et al. Petrological Records of the Mesozoic-Cenozoic Mantle Plume Tectonics in Epicontinental Area of Southeast China[J]. Acta Geoscientia Sinica, 1999, 20(3): 253-258.
[10] 毛建仁,陶奎元,邢光福,等. 中国南方新生代地幔柱活动的地球化学证据[J]. 地质论评, 1999, 45(增刊1): 698-702. Mao Jianren, Tao Kuiyuan, Xing Guangfu, et al. Geochemical Evidence for Cenozoic Mantle Plume in Southern China[J]. Geological Review,1999, 45(Sup.1): 698-702.
[11] Li Z X, Li X H. Formation of the 1 300 km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model[J]. Geology, 2007, 35: 179-182.
[12] Li Z X, Li X H, Chung S L, et al. Magmatic Switch-on and Switch-Off Along the South China Continental Margin Since the Permian: Transition from an Andean-Type to a Western Pacific-Type Plate Boundary[J]. Tectonophysics, 2012,532/535: 271-290.
[13] Zhou X M, Sun T, Shen W Z, et al. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution[J]. Episodes, 2006, 29: 26-33.
[14] Zhou X M, Li W X. Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Underplating of Mafic Magmas[J]. Tectonophysics, 2000, 326: 269-287.
[15] Liu Q, Yu J H, Wang Q, et al. Ages and Geochemistry of Granites in the Pingtan-Dongshan Metamorphic Belt, Coastal South China: New Constraints on Late Mesozoic Magmatic Evolution[J]. Lithos, 2012, 150:268-286.
[16] Liu L, Xu X S, Zou H B. Episodic Eruptions of the Late Mesozoic Volcanic Sequences in Southeastern Zhejiang, SE China: Petrogenesis and Implications for the Geodynamics of Paleo-Pacific Subduction[J]. Lithos, 2012, 154: 166-180.
[17] Sun W D, Ding X, Hu Y H, et al. The Golden Transformation of the Cretaceous Plate Subduction in the West Pacific[J]. Earth and Planetary Science Letters, 2007, 262: 533-542.
[18] Sun W D, Yang X Y, Fan W M, et al. Mesozoic Large Scale Magmatism and Mineralization in South China[J]. Lithos, 2012, 150: 1-5.
[19] Ludden J N, Plank T, Larson R, et al. Leg 185 Synthesis: Sampling the Oldest Crust in the Ocean Basins to Understand Earth’s Geodynamic and Geochemical Fluxes[Online][J]. Proc Ocean Drill Program Sci Results,2006, 185: 35.
[20] 邓平,舒良树,肖旦红. 中国东南部晚中生代火成岩的基底探讨[J]. 高校地质学报, 2002, 8(2): 169-179. Deng Ping, Shu Liangshu, Xiao Danhong. A Study on the Tectonic Basement of Late Mesozoic Igneous Rocks in Southeastern China[J]. Geological Journal of China Universities, 2002, 8(2): 169-179.
[21] Li X H, Li Z X, Ge W, et al. Neoproterozoic Granitoids in South China: Crustal Melting Above a Mantle Plume at ca. 825 Ma?[J]. Precambrian Research, 2003, 122: 45-83.
[22] 侯可军,李延河,田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J]. 矿床地质, 2009, 28(4): 481-492. Hou Kejun, Li Yanhe, Tian Yourong. In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting LA-MC-ICP-MS[J]. Mineral Deposits, 2009, 28(4): 481-492.
[23] Liu Y, Hu Z, Gao S, et al. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS Without Applying an Internal Standard[J]. Chemical Geology, 2008, 257(1): 34-43.
[24] Ludwig K R. User’s Manual for Isoplot/Ex (rev. 2.49): A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Centre Special Publication, 2001.
[25] Andersen T. Correction of Common Lead in U-Pb Analyses that do not Report204Pb[J]. Chemical Geology, 2002, 192: 59-79.
[26] 刘亮,邱检生,李真. 浙江沐尘石英二长岩及其镁铁质包体的锆石U-Pb年龄和Hf同位素组成:对岩浆混合作用的示踪[J]. 地质论评, 2011, 57(3): 327-336. Liu Liang, Qiu Jiansheng, Li Zhen. Zircon U-Pb Age and Hf Isotopic Compositions of Quartz Monzonite and Enclosed Mafic Enclaves in Muchen Pluton, Zhejiang Province: Tracing Magma Mixing in Their Petrogenesis[J]. Geological Review, 2011, 57(3): 327-336.
[27] 邱检生,刘亮,李真. 浙江黄岩望海岗石英正长岩的锆石U-Pb年代学与Sr-Nd-Hf同位素地球化学及其对岩石成因的制约[J]. 岩石学报, 2011, 27(6): 1557-1572. Qiu Jiansheng,Liu Liang, Li Zhen. Zircon U-Pb Geochronology and Sr-Nd-Hf Isotopic Geochemistry of Quartz Syenite from Wanghaigang Pluton in Huangyan County,Zhejiang Province and Their Implications for Petrogenesis[J]. Acta Petrologica Sinica, 2011, 27(6): 1557-1572.
[28] 李艳军,魏俊浩,姚春亮,等. 浙东南怀溪铜金矿床与曹门碱性花岗岩体成因关系的年代学制约[J]. 地球科学:中国地质大学学报, 2010, 35(4): 585-596. Li Yanjun, Wei Junhao, Yao Chunliang, et al. Genetic Relationship of the Copper-Gold Deposit and the Caomen Alkaline Granite, Southeastern Zhejiang Province, China: Constraint from Geochronologies[J]. Earth Science:Journal of China University of Geosciences, 2010, 35(4): 585-596.
[29] 董传万,沈忠悦,杜振永,等. 浙东晚中生代岩浆混合作用新证据:新昌儒岙岩石包体群的发现与地质意义[J]. 浙江大学学报:理学版, 2009, 36(2): 224-230. Dong Chuanwan, Shen Zhongyue, Du Zhenyong, et al. A New Case of Late Mesozoic Magma Mixing in Eastern Zhejiang: Discovery of the Ru’ao Enclave Swarms, Xinchang County and Its Geological Implication[J]. Journal of Zhejiang University:Science Edition, 2009, 36(2): 224-230.
[30] 李艳军,魏俊浩,姚春亮,等. 浙东南石平川花岗岩体LA-ICP-MS锆石U-Pb年代学及构造意义[J]. 地质论评, 2009, 55(5): 673-684. Li Yanjun, Wei Junhao, Yao Chunliang, et al. Zircon U-Pb Dating and Tectonic Significance of the Shipingchuan Granite in Southeastern Zhejiang Province, SE China[J]. Geological Review, 2009, 55(5): 673-684.
[31] 肖娥,邱检生,徐夕生,等. 浙江瑶坑碱性花岗岩体的年代学、地球化学及其成因与构造指示意义[J]. 岩石学报, 2007, 23(6): 1431-1440. Xiao E, Qiu Jiansheng, Xu Xisheng, et al. Geochronology and Geochemistry of the Yaokeng Alkaline Granitic Pluton in Zhejiang Province: Petrogenetic and Tectonic Implications[J]. Acta Petrologica Sinica, 2007, 23(6): 1431-1440.
[32] 卢成忠,汪庆华,董传万,等. 浙江洪公铝质A型花岗岩类的岩石地球化学及其构造环境[J]. 高校地质学报, 2006, 12(4): 500-506. Lu Chengzhong, Wang Qinghua, Dong Chuanwan, et al. Geochemical Characteristics of the Honggong Aluminous A-Type Granite Pluton in Zhejiang Province and Its Tectonic Setting[J].Geological Journal of China Universities, 2006, 12(4): 500-506.
[33] Peccerillo A, Taylor S R. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58: 63-81.
[34] Shand S. Eruptive Rocks. Their Genesis, Com-position, Classification, and Their Relation to Ore-Deposits with a Chapter on Meteorite[M]. New York: John Wiley & Sons,1943.
[35] Boynton W V. Geochemistry of the Rare Earth Elements: Meteorite Studies[C]//Henderson P. Rare Earth Element Geochemistry. Amsterdam: Elservier, 1984: 63-114.
[36] Sun S S, Mcdonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. London: Geological Society Special Publications, 1989: 313-345.
[37] Sylvester P J. Post-Collisional Strongly Peraluminous Granites[J]. Lithos, 1998, 45(1/2/3/4): 29-44.
[38] Altherr R, Hol A, Hegner E, et al. High-Potassium, Calc-Alkaline I-Type Plutonism in the European[J]. Lithos, 2000, 50: 51-73.
[39] 顾明光,冯立新,胡艳华,等. 浙江绍兴地区广山-栅溪岩体LA-ICP-MS锆石U-Pb定年:对漓渚铁矿成矿时代的限定[J]. 地质通报, 2011, 30(8): 1212-1219. Gu Mingguang, Feng Lixin, Hu Yanhua, et al. LA-ICP-MS U-Pb Dating of Zircons from Guangshan and Zhaxi Plutons in Shaoxing Area, Zhejiang Province: Constraint on the Ore-Forming Epoch of the Lizhu Iron Ore Deposit[J]. Geological Bulletin of China, 2011, 30(8): 1212-1219.
[40] 汪建国,汪隆武,陈小友,等. 浙西开岭脚和里陈家花岗闪长岩锆石SHRIMP U-Pb年龄及其地质意义[J]. 中国地质, 2010, 37(6): 1559-1565. Wang Jianguo, Wang Longwu, Chen Xiaoyou, et al. SHRIMP U-Pb Ages of Zircons from Kailingjiao and Lichenjia Granodiorites in Western Zhejiang and Their Geological Implications[J].Geology in China, 2010, 37(6):1559-1565.
[41] 王强,赵振华,简平,等. 华南腹地白垩纪A型花岗岩类或碱性侵入岩年代学及其对华南晚中生代构造演化的制约[J]. 岩石学报, 2005, 21(3): 795-808. Wang Qiang, Zhao Zhenhua, Jian Ping, et al. Geochronology of Cretaceous A-Type Granitoids or Alkaline Intrusive Rocks in the Hinterland, South China: Constraints for Late-Mesozoic Tectonic Evolution[J]. Acta Petrotogica Sinica, 2005, 21(3): 795-808.
[42] Barbarin B. A Review of the Relationships Between Granitoid Types,Their Origins and Their Geodynamic Environments[J]. Lithos, 1999, 46: 605-626.
[43] 张岳桥,徐先兵,贾东,等. 华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录[J]. 地学前缘,2009, 16(1): 234-247. Zhang Yueqiao, XU Xianbing, Jia Dong, et al. Deformation Record of the Change from Indosinian Collision-Related Tectonic System to Yanshanian Subduction-Related Tectonic Systemin South China During the Early Mesozoic[J]. Earth Science Froniers, 2009, 16(1):234-247.
[44] 余心起,吴淦国,舒良树,等. 白垩纪时期赣杭构造带的伸展作用[J]. 地学前缘, 2006, 13(3): 31-43. Yu Xinqi, Wu Ganhuo, Shu Liangshu, et al. The Cretaceous Tectonism of the Gan-Hang Tectonic Belt, Southeastern China[J]. Earth Science Froniers, 2006, 13(3):31-43.
[45] 余心起,吴淦国,张达,等. 中国东南部中生代构造体制转换作用研究进展[J]. 自然科学进展, 2005, 15(10): 17-24. Yu Xinqi, Wu Ganguo, Zhang Da, et al. Progress in Researching into the Mesozoic Tectonic Regime Transformation in Southeast China[J]. Progress in Natural Science, 2005, 15(10): 563-572.
[46] 邢光福,卢清地,陈荣,等. 华南晚中生代构造体制转折结束时限研究:兼与华北燕山地区对比[J]. 地质学报, 2008, 82(4): 451-463. Xing Guangfu, Lu Qingdi, Chen Rong, et al. Study on the Ending Time of Late Mesozoic Tectonic Regime Transition in South China:Comparing to the Yanshan Area in North China[J]. Acta Geologica Sinica, 2008, 82(4): 451-463.
[47] 邱检生,王德滋,Brent I A Mclnnes. 浙闽沿海地区I型-A型复合花岗岩体的地球化学及成因[J]. 岩石学报. 1999,15(2): 237-246. Qiu Jiansheng, Wang Dezi, Brent I A McInnes. Geochemistry and Petrogenesis of the I-and A-Type Composite Granitemasses in the Coastal Area of Zhejiang and Fujian Province[J]. Acta Petrologica Sinica, 1999, 15(2): 237-246.
[48] 王德滋,沈渭洲. 中国东南部花岗岩成因与地壳演化[J]. 地学前缘, 2003, 10(3): 209-220. Wang Dezi, Shen Weizhou. Genesis of Granitoids and Crustal Evolution in Southeast China[J]. Earth Science Froniers, 2003, 10(3):209-220.
[49] 李福林,周汉文,唐增才,等. 浙江淳安木瓜基性岩墙群U-Pb年龄、地球化学特征及意义[J]. 地球化学, 2011, 40(1): 22-34. Li Fulin, Zhou Hanwen, Tang Zengcai, et al. U-Pb Ages, Geochemistry and Tectonic Implications of Mafic Dyke Swarms in Mugua, Chun’an County, Zhejiang Province[J]. Chemical Geology, 2011, 40(1): 22-34.
[50] 秦社彩,范蔚茗,郭锋,等. 浙闽晚中生代辉绿岩脉的岩石成因:年代学与地球化学制约[J]. 岩石学报, 2010, 26(11): 3295-3306. Qin Shechai, Fan Weiming, Guo Feng, et al. Petrogenesis of Late Mesozoic Diabase Dikes in Zhejiang-Fujian Provinces: Constraints from Ar-Ar Dating and Geochemistry[J]. Acta Petrologica Sinica, 2010, 26(11): 3295-3306.
[51] 董传万,闫强,张登荣,等. 浙闽沿海晚中生代伸展构造的岩石学标志:东极岛镁铁质岩墙群[J]. 岩石学报, 2010, 26(4): 1195-1203. Dong Chuanwan, Yan Qiang, Zhang Dengrong, et al. Late Mesozoic Extension in the Coastal Area of Zhejiang and Fujian Province: A Petrologic Indicator from the Dongji Island Mafic Dike Swarms[J]. Acta Petrologica Sinica, 2010, 26(4): 1195-1203.
[52] Chen J F, Jahn B M. Crustal Evolution of Sou-theastern China: Nd and Sr Isotopic Evidence[J]. Tectonophysics, 1998, 284: 101-133.
[53] Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology, 1984, 25(4): 956-983.
[54] Förster H J, Tischendorf G, Trumbull R B. An Evaluation of the Rb vs. (Y+Nb) Discrimination Diagram to Infer Tectonic Setting of Silicic Igneous Rocks[J]. Lithos, 1997, 40: 261-293.
[55] 毛建仁,高桥浩,厉子龙,等. 中国东南部与日本中-新生代构造-岩浆作用对比研究[J]. 地质通报, 2009,28(7):844-856. Mao Jianren, Yutaka Takahashi, Li Zilong, et al. Correlation of Meso-Cenozoic Tectono-Magmatism Between SE China and Japan[J]. Geological Bulletin of China, 2009, 28(7):844-856.
[56] 舒良树,王德滋. 北美西部与中国东南部盆岭构造对比研究[J]. 高校地质学报, 2006, 12(1): 1-13. Shu Liangshu, Wang Dezi. A Comparison Study of Basin and Range Tectonics in the Western North America and Southeastern China[J]. Geological Journal of China Universities, 2006, 12(1):1-13.
[57] 刘国兴,韩凯,韩江涛. 华南东南沿海地区岩石圈电性结构[J]. 吉林大学学报:地球科学版,2012,42 (2): 536-544. Liu Guoxing, Han Kai, Han Jiangtao. Lithosphere Electrical Structure in Southeast Coastal Region, South China[J]. Journal of Jilin University:Earth Science Edition, 2012, 42(2): 536-544.
Zircon U-Pb Geochronology, Geochemistry of Late-Mesozoic Granite in Southeastern (SE) Zhejiang Province and Its Tectonic Implication
Gao Wanli1, Wang Zongxiu1, Wang Duixing2,3, Li Chunlin1
1.Institute of Geomechanics,Key Lab of Shale Oil and Gas Geological Survey/ Chinese Academy of Geological Science, Beijing 100081,China2.School of Earth Science and Resources, China University of Geosciences,Beijing 100083,China3.School of Resources, Shijiazhuang University of Economics,Shijiazhuang 050031,China
The southeastern (SE) Zhejiang (southeast side of the Jiangshan-shaoxing fault) situated in coastal area of the Pacific Ocean, is an important area to understand the subduction of the Paleo-Pacific plate. Yantan, Xinpu and Liangnong plutons in SE Zhejiang are chosen for petrography, zircon geochronology and geochemistry study. Combined with previous research results of the granite in this area,the authors discuss the relationship between the subduction of the Paleo-Pacific plate and magmatism. LA-ICP-MS zircon U-Pb dating results show that the Xinpu granite has an crystallization age of (145.8±1.4) Ma, and emplaced in the first stage of Early Cretaceous in SE Zhejiang Province, and the Liangnong granodiorite and Yantan syenogranite, with emplacement ages of (106.2 ± 1.4) and (94.7 ±1.4) Ma, respectively, were resulted from the Late Cretaceous magmatism. Late Mesozoic granites are charactered by such geochemical characteristics as enrichment of SiO2, Al2O3, and high ratio of A/CNK, which indicates the granite belongs to the high-K calc-alkaline granite. In the primitive mantle-normalized distribution patterns, these granitic rocks are enriched in Rb, Cs,U,Th, Pb, and depleted in Ba,Sr, Nb, Ti. Their REE patterns are highly fractionated, strongly negative Eu anomalies and low total REE, which is corcandant with those of the crust-derived granite. The authors also conclude that the Xinpu granite (ca.145.8 ± 1.4 Ma) formed in the tectonic setting shifting from compression in the Late Jurassic to extension in Cretaceous, and Liangnong granite (ca. 106.2 ± 1.4 Ma) and Yantan granite (ca. 94.7 ± 1.4 Ma) are formed in the extensional dynamic setting which are all influenced by subduction of the Paleo-Pacific plate.
southeastern Zhejiang; Late-Mesozoic; granite; LA-ICP-MS; geochemistry; Paleo-Pacific plate
10.13278/j.cnki.jjuese.201403112.
2013-09-25
中国地质调查局地质大调查项目 (1212011121068)
高万里(1985-),男,博士研究生,主要从事岩石大地构造方面研究,E-mail:gwanli851202@163.com
王宗秀(1959-),男,研究员,主要从事构造地质方面研究,E-mail:wzxmail@vip.sina.com。
10.13278/j.cnki.jjuese.201403112
P588.12
A
高万里,王宗秀,王对兴,等.浙东南晚中生代花岗岩的锆石U-Pb年代学、地球化学及其地质意义.吉林大学学报:地球科学版,2014,44(3):861-875.
Gao Wanli, Wang Zongxiu, Wang Duixing,et al. Zircon U-Pb Geochronology, Geochemistry of Late-Mesozoic Granite in Southeastern(SE) Zhejiang Province and Its Tectonic Implication.Journal of Jilin University:Earth Science Edition,2014,44(3):861-875.doi:10.13278/j.cnki.jjuese.201403112.