李一星,吴梅,李友国
摘要:对前期利用抑制消减杂交技术(Suppressive subtractive hybridization, SSH)构建的紫云英(Astragalus sinicus)根部组织的共生固氮差异表达cDNA文库进行了全文库测序和初步分析,并利用半定量RT-PCR方法验证了其中5个基因片段在根瘤中的下调表达。结果表明,从180个克隆中共获得94个有效序列,文库插入片段长度为200~1 300 bp。BLAST同源比对分析结果表明,有90个序列可以找到同源片段,有4个可能为新基因,按功能分为10个类群。
关键词:紫云英(Astragalus sinicus);共生固氮;抑制消减杂交;下调表达基因
中图分类号:S541+.3;Q786 文献标识码:A 文章编号:0439-8114(2014)07-1684-06
Isolation and Analysis of Down-regulated Symbiotic Nitrogen Fixation Genes in Astragalus sinicus Root Nodules
LI Yi-xing, WU Mei, LI You-guo
(State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China)
Abstract: In previous work, a cDNA library of Astragalus sinicus genes related with symbiotic nitrogen fixation was constructed with suppressive subtractive hybridization(SSH). The library containing down-regulated genes was sequenced and analyzed. Among the sequenced genes, five fragments were sckeened and its down-regulated expressions were confirmed by semi-quantitative RT-PCR. The results showed that 94 genes were obtained from 180 clones and the average length of inserted fragments was 200~1 300 bp. Nucleotide BLAST homological analysis showed that 90 genes had similarities to known genes and 4 genes were putatively novel genes. All the 94 genes were divided into 10 functional categories.
Key words:Astragalus sinicus; symbiotic nitrogen fixation; suppressive subtractive hybridization; down-regulated gene
根瘤菌和豆科植物可以共生固氮,共生固氮是一个二者相互识别、相互作用的复杂过程。根瘤的形成以及根瘤菌的入侵、分化和发育离不开植物基因的参与和调控[1]。这种调控涉及多种代谢途径和信号传递过程,有多个基因参与。对共生固氮过程中基因表达情况进行全局性的研究,可以发现并鉴定出更多与根瘤形成和固氮过程相关的基因,有助于建立共生固氮的调控网络。如研究者从蒺藜苜蓿中鉴定出756个与根瘤形成和固氮相关的差异表达基因,其中313个基因上调表达,而443个基因则下调表达[2]。Lohar等[3]也从苜蓿中检测出在根瘤菌感染的1~72 h内各阶段上调或下调表达的基因。抑制消减杂交技术是一种以mRNA差异显示为基础的筛选差异表达基因技术,已被广泛应用于植物差异表达基因的研究。Fan等[4]利用抑制消减杂交技术筛选出火龙果中与干旱胁迫相关的基因;Guo等[5]采用抑制消减杂交从胡椒中鉴定出73个在低温胁迫下可能受脱落酸调控的基因;韩明鹏等[6]构建了紫花苜蓿高温胁迫条件下的抑制消减杂交文库,用来筛选高温诱导表达的基因。抑制消减杂交技术同样是研究共生条件下差异表达基因的有效手段。Clement等[7]构建了干旱条件下大豆根瘤的抑制消减杂交文库,并从中鉴定出一批与干旱条件下根瘤的固氮功能相关的新基因。Godiard等[8]通过抑制消减杂交技术筛选出52个在根瘤菌-苜蓿共生固氮过程中起调控作用的基因。
紫云英(Astragalus sinicus)是一种主要分布于中国、日本和韩国等东南亚国家的豆科绿肥。它和华癸中慢生根瘤菌共生,形成不定型根瘤,二者的共生具有严格的宿主专一性,是研究共生固氮的好材料[9]。前期工作中Chou等[10]构建了紫云英根瘤的正向和反向抑制消减杂交文库,并通过上调文库鉴定出16个共生条件下增强或诱导表达的新基因。相对于上调表达基因,下调表达基因同等重要,本研究对前期构建的下调文库进行了全文库测序,并对测序结果进行了同源比对分析,为后续基因功能的研究提供参考。
1 材料和方法
1.1 材料
华癸中慢生根瘤菌7653R(Mesorhizobium huakuii 7653R)为华中农业大学农业微生物学国家重点实验室固氮室保存。RNA抽提所用Trizol试剂购自Invitrogen公司,Taq DNA聚合酶、DNaseⅠ、Reverse Transcriptase M-MLV均购自Takara大连有限公司。
1.2 方法
1.2.1 植物培养及结瘤 将紫云英种子用70%乙醇处理5 min,再用3%NaClO处理10 min,然后用无菌水洗涤5~6次,将消毒后的种子用无菌水浸泡2 h后,平摊于含有0.5%蔗糖和1.2%琼脂的平皿上,置于光照培养箱中22 ℃培养。待胚根长至1 cm左右时,将种子接种于无菌沙钵中培养,子叶展开后接种华癸中慢生根瘤菌7653R。所有植株均用无氮营养液浇灌。
1.2.2 总RNA的提取和cDNA合成 接种根瘤菌7653R后26 d,收集根瘤、去除根瘤的根和未接种植株的根,用Trizol试剂提取根瘤组织总RNA,经DNaseⅠ处理后,用紫外分光光度计测定其纯度和浓度,然后用DEPC水将各样品RNA浓度调整到一致。取3 μL总RNA,以Oligo dT18为引物,反转录酶Reverse Transcriptase M-MLV反转录得到cDNA,以5′-ATGCAGATCTTTTGTGAAGAC-3′和5′-ACCACCACGGAAGACGGAG-3′为引物, 进行PCR 扩增保守基因泛素序列,以验证cDNA合成是否有效。
1.2.3 半定量RT-PCR 分别以根瘤、去除根瘤的根和未接种植株的根的cDNA为模板,用基因特异性引物扩增AsG6、AsC2、AsB3、AsT6、AsD5这5个基因片段,扩增产物经2%琼脂糖凝胶电泳,进行半定量分析,以232 bp的18S rRNA 基因片段为内参。所用引物序列见表1。
1.2.4 序列分析 目的基因氨基酸序列推测及比对利用BioEdit软件进行。同源比对利用BLAST程序(http://www.ncbi.nlm.nih.gov/,http://ca.expasy.org/)进行。氨基酸保守结构域采用InterProScan (http://www.ebi.ac.uk/)和Pfam(http://www.sanger.ac.uk/Software/)数据库进行分析。
2 结果和分析
2.1 文库序列的聚类分析
将下调文库进行全文库测序,共获得94个有效序列,插入片段的大小在200~1 300 bp。将所有序列利用BLAST程序进行同源序列比对(表2),结果发现有90个序列可以找到同源片段,同时有4个序列在数据库中找不到同源片段,推测这4个序列可能代表新的基因。以上94个有效序列对应81个基因,按其编码蛋白的功能分为10个类群(图1):核糖体蛋白9个,信号转导相关蛋白7个,基因表达相关蛋白12个,代谢相关蛋白20个,膜及转运相关蛋白11个,细胞应激防御相关蛋白8个,未知蛋白6个,假定蛋白3个,无同源性蛋白4个和1个其他蛋白。
2.2 半定量RT-PCR验证
在测序得到的94个基因片段中,分别选取过氧化物酶、热激蛋白、C3HC4型锌指蛋白、假定蛋白和质体蓝素蛋白5个基因片段AsG6、AsC2、AsB3、AsT6、AsD5(表2)对其下调表达进行验证。提取接种后26 d的紫云英根瘤、感染根和未接种对照根的总RNA,进行半定量RT-PCR分析。以232 bp的18S rRNA 基因片段为内参,检测5个目标基因的半定量结果。由图2可知,与未接种的根相比,这5个基因在根瘤中的表达量大大降低,呈明显的下调表达特征,这说明文库的结果是可靠的。
3 结论与讨论
3.1 基因表达相关蛋白
El Yahyaoui等[2]在蒺藜苜蓿根瘤中发现了13个上调表达的转录因子和11个下调表达的转录因子,基因芯片结果显示,其中一些转录因子可能与结瘤素基因的表达相关,在下调基因中包括一个与DNA结合的WRKY蛋白。Lohar等[3]对苜蓿早期共生阶段的转录组进行测序,发现了许多WRKY家族基因的下调表达。本研究也发现一个WRKY家族基因AsF6的下调表达。WRKY家族基因在植物抵抗病原菌侵染和其他非生物胁迫的过程中发挥重要的调节作用,其靶蛋白可能是病程相关蛋白,因此WRKY与防御相关蛋白的表达有关[11]。除WRKY外,本研究还发现了1个NAC家族基因AsI1的下调表达。NAC家族是植物转录因子中最大的家族之一,在植物抵抗不同的生物和非生物胁迫中发挥重要的调节作用[12],如NAC家族成员参与植物对干旱、低温、盐等胁迫的反应[13],在植物应对病原菌的防御反应中发挥作用[14]。另外,一些NAC家族成员在植物发育的过程中发挥调节作用,如种子萌发[15]、细胞分裂[16]、叶的衰老[17]等。
近年来,对苜蓿MtNAC969研究发现,其在根应对盐胁迫的过程中发挥负调控作用,而在苜蓿与根瘤菌的共生过程中可以刺激侧根的形成,但不影响根瘤数量,同时在根瘤中的下调表达导致根瘤提前衰老[18]。因此,本研究中发现的NAC蛋白在共生过程中可能也发挥重要的调节作用,值得深入研究。
3.2 信号转导和膜转运相关基因
目前发现在根瘤菌和宿主共生的过程中,植物中有很多信号传导相关基因是上调表达的。同时,El Yahyaoui等[2]发现在苜蓿中有些信号转导相关基因是下调表达的,如钙调素-GTP结合蛋白、锌指蛋白、蛋白激酶以及与CLAVATA1、Lj HAR 和GmNARK同源的受体激酶,可能与结瘤的自主调节有关。本研究也发现了许多紫云英根瘤中下调表达的信号转导相关基因,包括编码磷酸诱导蛋白1、钙调蛋白4、泛素家族蛋白、蛋白磷酸酶、蛋白激酶等的基因。
膜转运相关蛋白在类菌体与植物细胞物质交换的过程中发挥重要作用,根瘤的固氮会增加根瘤和根部的氨基酸、己糖、硫酸盐等的转运,同时有一些转运基因被下调表达,如某些磷酸盐和硝酸盐转运基因在苜蓿的根瘤中下调表达[19]。本研究中下调的相关基因有11个(膜及转运相关蛋白对应基因),编码蛋白包括硫氧还蛋白h、细胞溶质因子、蔗糖转运蛋白、G蛋白偶联受体、钠钙交换体蛋白、液泡储藏蛋白55家族蛋白等。
3.3 代谢相关蛋白
在下调表达的基因中,初级和次级代谢相关基因较多,包括UDP-葡糖醛酸酯-4-异构酶、分支酸合成酶、SAM依赖的羧甲基转移酶、长链脂肪酸-辅酶A连接酶家族蛋白、S-腺苷-L-甲硫氨酸合成酶、NAD依赖型异柠檬酸脱氢酶、质体蓝素、12-氧代植二烯酸-10,11-还原酶等22个基因。El Yahyaoui等[2]也研究发现与根中相比,大量与初级和次级代谢相关的基因在苜蓿根瘤中被下调表达。这可能反映了根瘤与根在代谢水平上的差异,如在根瘤中很多代谢途径受到了抑制,另一些与固氮相关的代谢途径却被激活。
3.4 防御和应激相关基因
一般认为,根瘤菌与植物共生的过程中需要抑制宿主的防御机制,从而保证其成功入侵[20]。事实上,确实有很多与病程和防御相关的基因表达在共生过程中受到抑制,如在苜蓿中编码过氧化物酶、多数非特异性转脂蛋白、脂肪氧化酶、PR10/Betv1、Kunitz 型胰蛋白酶抑制剂等的基因均被下调表达。本研究中发现1个过氧化物酶编码基因AsG6的下调表达,除此之外下调的基因还包括脂肪酸酰基辅酶A脱氢酶、生存蛋白、过氧化物酶、热激蛋白Hsp70、铁氧化还蛋白、dnaJ伴侣蛋白等。豆科植物通过抑制防御基因的表达允许根瘤菌的侵入,然而某些防御和抗病相关基因的上调表达又说明豆科植物同时还要限制根瘤菌的侵入,或保护根瘤不受病原菌和昆虫的侵害[21]。
3.5 未知基因、假设蛋白基因和无同源性基因
在下调基因中,未知蛋白编码基因有6个,假定蛋白基因有3个,无任何同源性的基因有4个,这些基因都有可能是一些尚未被发现的新基因,特别是无任何同源性的4个基因,有待进一步研究。
参考文献:
[1] MERGAERT P, UCHIUMI T, ALUNNI B, et al. Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(13):5230-5235.
[2] EL YAHYAOUI F, KUSTER H, AMOR B B, et al. Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program[J]. Plant Physiology,2004,136(2):3159-3176.
[3] LOHAR D P, SHAROPOVA N, ENDRE G, et al. Transcript analysis of early nodulation events in Medicago truncatula[J]. Plant Physiology,2006,140(1):221-234.
[4] FAN Q J, YAN F X, QIAO G, et al. Identification of differentially-expressed genes potentially implicated in drought response in pitaya (Hylocereus undatus) by suppression subtractive hybridization and cDNA microarray analysis[J].Gene,2014,533(1):322-331.
[5] GUO W L, CHEN R G, GONG Z H, et al. Suppression subtractive hybridization analysis of genes regulated by application of exogenous abscisic acid in pepper plant (Capsicum annuum L.) leaves under chilling stress[J]. PLoS One,2013,8(6):e66667.doi:10.1371/journal.pone.0066667.
[6] 韩明鹏,王彦华,高永革,等.高温胁迫下紫花苜蓿抑制消减杂交文库的构建[J].草业学报,2011,20(5):126-132.
[7] CLEMENT M, LAMBERT A, HEROUART D, et al. Identification of new up-regulated genes under drought stress in soybean nodules[J]. Gene,2008,426(1-2):15-22.
[8] GODIARD L, NIEBEL A, MICHELI F, et al. Identification of new potential regulators of the Medicago truncatula-Sinorhizobium meliloti symbiosis using a large-scale suppression subtractive hybridization approach[J]. Molecular Plant-Microbe Interactions,2007,20(3):321-332.
[9] 吴 梅,丑敏霞,李一星,等.参与紫云英共生固氮的一个上调表达结瘤素基因的分离与鉴定[J].华中农业大学学报,2010,29(2):169-174.
[10] CHOU M X, WEI X Y, CHEN D S, et al. Thirteen nodule-specific or nodule-enhanced genes encoding products homologous to cysteine cluster proteins or plant lipid transfer proteins are identified in Astragalus sinicus L. by suppressive subtractive hybridization[J]. Journal of Experimental Botany,2006,57(11):2673-2685.
[11] EULGEM T, RUSHTON P J, ROBATZEK S, et al. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science,2000,5(5):199-206.
[12] NURUZZAMAN M, SHARONI A M, KIKUCHI S, et al. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants[J]. Frontiers in Microbiology,2013,4:248.
[13] SHAH S T, PANG C, FAN S,et al. Isolation and expression profiling of GhNAC transcription factor genes in cotton (Gossypium hirsutum L.) during leaf senescence and in response to stresses[J].Gene,2013,531(2):220-234.
[14] JENSEN M K, HAGEDORN P H, DE TORRES-ZABALA M, et al. Transcriptional regulation by an NAC (NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis[J]. The Plant Journal,2008,56(6):867-880.
[15] KIM S G, LEE A K, YOON H K, et al. A membrane-bound NAC transcription factor NTL8 regulates gibberellicacid-mediated salt signaling in Arabidopsis seed germination[J]. The Plant Journal,2008,55(1):77-88.
[16] KIM Y S, KIM S G, PARK J E, et al. A membrane-bound NAC transcription factor regulates cell division in Arabidopsis[J]. The Plant Cell,2006,18(11):3132-3144.
[17] ZHOU Y, HUANG W, LIU L, et al. Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence[J]. BMC Plant Bbiology,2013,13:132.
[18] DE ZELICOURT A, DIET A, MARION J, et al. Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence[J]. The Plant Journal,2012,70(2):220-230.
[19] MITHOFER A. Suppression of plant defence in rhizobia-legume symbiosis[J]. Trends in Plant Science,2002,7(10):446-450.
[20] SAEKI K. Rhizobial measures to evade host defense strategies and endogenous threats to persistent symbiotic nitrogen fixation: A focus on two legume-rhizobium model systems[J]. Cellular and Molecular Life Sciences,2011,68(8):1327-1339.
[21] GERARD P J. Dependence of Sitona lepidus (Coleoptera: Curculionidae) larvae on abundance of white clover Rhizobium nodules[J]. Bulletin of Entomological Research,2001,91(2):149-152.
[9] 吴 梅,丑敏霞,李一星,等.参与紫云英共生固氮的一个上调表达结瘤素基因的分离与鉴定[J].华中农业大学学报,2010,29(2):169-174.
[10] CHOU M X, WEI X Y, CHEN D S, et al. Thirteen nodule-specific or nodule-enhanced genes encoding products homologous to cysteine cluster proteins or plant lipid transfer proteins are identified in Astragalus sinicus L. by suppressive subtractive hybridization[J]. Journal of Experimental Botany,2006,57(11):2673-2685.
[11] EULGEM T, RUSHTON P J, ROBATZEK S, et al. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science,2000,5(5):199-206.
[12] NURUZZAMAN M, SHARONI A M, KIKUCHI S, et al. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants[J]. Frontiers in Microbiology,2013,4:248.
[13] SHAH S T, PANG C, FAN S,et al. Isolation and expression profiling of GhNAC transcription factor genes in cotton (Gossypium hirsutum L.) during leaf senescence and in response to stresses[J].Gene,2013,531(2):220-234.
[14] JENSEN M K, HAGEDORN P H, DE TORRES-ZABALA M, et al. Transcriptional regulation by an NAC (NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis[J]. The Plant Journal,2008,56(6):867-880.
[15] KIM S G, LEE A K, YOON H K, et al. A membrane-bound NAC transcription factor NTL8 regulates gibberellicacid-mediated salt signaling in Arabidopsis seed germination[J]. The Plant Journal,2008,55(1):77-88.
[16] KIM Y S, KIM S G, PARK J E, et al. A membrane-bound NAC transcription factor regulates cell division in Arabidopsis[J]. The Plant Cell,2006,18(11):3132-3144.
[17] ZHOU Y, HUANG W, LIU L, et al. Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence[J]. BMC Plant Bbiology,2013,13:132.
[18] DE ZELICOURT A, DIET A, MARION J, et al. Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence[J]. The Plant Journal,2012,70(2):220-230.
[19] MITHOFER A. Suppression of plant defence in rhizobia-legume symbiosis[J]. Trends in Plant Science,2002,7(10):446-450.
[20] SAEKI K. Rhizobial measures to evade host defense strategies and endogenous threats to persistent symbiotic nitrogen fixation: A focus on two legume-rhizobium model systems[J]. Cellular and Molecular Life Sciences,2011,68(8):1327-1339.
[21] GERARD P J. Dependence of Sitona lepidus (Coleoptera: Curculionidae) larvae on abundance of white clover Rhizobium nodules[J]. Bulletin of Entomological Research,2001,91(2):149-152.
[9] 吴 梅,丑敏霞,李一星,等.参与紫云英共生固氮的一个上调表达结瘤素基因的分离与鉴定[J].华中农业大学学报,2010,29(2):169-174.
[10] CHOU M X, WEI X Y, CHEN D S, et al. Thirteen nodule-specific or nodule-enhanced genes encoding products homologous to cysteine cluster proteins or plant lipid transfer proteins are identified in Astragalus sinicus L. by suppressive subtractive hybridization[J]. Journal of Experimental Botany,2006,57(11):2673-2685.
[11] EULGEM T, RUSHTON P J, ROBATZEK S, et al. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science,2000,5(5):199-206.
[12] NURUZZAMAN M, SHARONI A M, KIKUCHI S, et al. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants[J]. Frontiers in Microbiology,2013,4:248.
[13] SHAH S T, PANG C, FAN S,et al. Isolation and expression profiling of GhNAC transcription factor genes in cotton (Gossypium hirsutum L.) during leaf senescence and in response to stresses[J].Gene,2013,531(2):220-234.
[14] JENSEN M K, HAGEDORN P H, DE TORRES-ZABALA M, et al. Transcriptional regulation by an NAC (NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis[J]. The Plant Journal,2008,56(6):867-880.
[15] KIM S G, LEE A K, YOON H K, et al. A membrane-bound NAC transcription factor NTL8 regulates gibberellicacid-mediated salt signaling in Arabidopsis seed germination[J]. The Plant Journal,2008,55(1):77-88.
[16] KIM Y S, KIM S G, PARK J E, et al. A membrane-bound NAC transcription factor regulates cell division in Arabidopsis[J]. The Plant Cell,2006,18(11):3132-3144.
[17] ZHOU Y, HUANG W, LIU L, et al. Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence[J]. BMC Plant Bbiology,2013,13:132.
[18] DE ZELICOURT A, DIET A, MARION J, et al. Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence[J]. The Plant Journal,2012,70(2):220-230.
[19] MITHOFER A. Suppression of plant defence in rhizobia-legume symbiosis[J]. Trends in Plant Science,2002,7(10):446-450.
[20] SAEKI K. Rhizobial measures to evade host defense strategies and endogenous threats to persistent symbiotic nitrogen fixation: A focus on two legume-rhizobium model systems[J]. Cellular and Molecular Life Sciences,2011,68(8):1327-1339.
[21] GERARD P J. Dependence of Sitona lepidus (Coleoptera: Curculionidae) larvae on abundance of white clover Rhizobium nodules[J]. Bulletin of Entomological Research,2001,91(2):149-152.