膏盐层氧化障在长江中下游玢岩铁矿成矿中的作用*

2014-05-30 07:14李延河段超韩丹陈新旺王丛林杨秉阳张成刘锋
岩石学报 2014年5期
关键词:盐层矿浆火山岩

李延河 段超 韩丹 陈新旺 王丛林 杨秉阳 张成 刘锋

1.国土资源部成矿作用和资源评价重点实验室,中国地质科学院矿产资源研究所,北京 100037 2.马钢集团矿业公司南山矿,马鞍山 243033

长江中下游是我国著名的多金属成矿带,发育一系列大中型铁铜金矿床。其中宁芜和庐枞中生代火山岩盆地产出一系列与白垩纪中基性火山-次火山岩有关的玢岩铁矿床。宁芜研究项目编写小组(1978)根据矿床产出位置、矿化类型和矿石岩石矿物组合将宁芜玢岩铁矿分为三类八式:产于火山岩中的铁矿床为龙旗山式、竹园山式、龙虎山式;产于次火山岩体(辉石闪长玢岩)及其附近火山岩层中的铁矿床为梅山式、凹山式、陶村式;产于次火山岩体与前火山岩系沉积岩接触带中的铁矿为凤凰山式、姑山式。建立了著名玢岩铁矿成矿模式,发展了成矿理论,有效指导了玢岩铁矿找矿工作。在此基础上,人们又对长江中下游玢岩铁矿形成的地质背景、成矿时代、成矿流体演化、矿床的空间分布规律和不同矿床类型之间的成因联系等开展了大量深入系统的研究(李秉伦和谢奕汉,1984;常印佛等,1991;胡文瑄等,1991;翟裕生等,1992;丁毅,1992;周涛发等,2008,2011;董树文等,2010;范裕等,2008;段超等,2011,2012;侯可军和袁顺达,2010),取得一系列重要成果,丰富和发展了玢岩铁矿成矿理论,深部找矿取得重大突破。大量地质事实表明长江中下游玢岩铁矿与三叠系膏盐地层(含石膏、石盐和碳酸盐的蒸发沉积地层)关系密切,但以前没有引起应有的重视,现在虽然认识到膏盐层在玢岩铁矿成矿作用中的重要性,但膏盐层的控矿机理还不清楚,“膏盐层氧化障”在玢岩铁矿成矿中的作用国内外鲜有报道;是否存在矿浆型铁矿体及其形成机制,国内外都存在激烈地争论(翟裕生等,1982;林新多,1984;赵永鑫,1993;Meinert et al.,2005;Barton and Johnson,1996;Frutos and Oyarzun,1975;Henriquez et al.,2003;Haller and Fontbote,2009)。玢岩铁矿成矿模式反映的主要是浅层矿化,深部矿化基本没有涉及。虽然宁芜-庐枞盆地深部找矿工作取得重大进展,但对深部矿体的赋存部位、矿化类型和控矿因素知之甚少(高道明和赵云佳,2008;林刚和许德如,2010;杜建国和常丹燕,2011;周涛发等,2011)。本文展示了三叠纪膏盐层与玢岩铁矿的空间关系和二者存在成因联系的地质和硫同位素证据,揭示了膏盐层氧化障的控矿机理和铁矿浆的形成过程,探讨了长江中下游玢岩铁矿的“双层成矿结构”及深部矿体的赋存部位和矿化形式。

图1 长江中下游多金属成矿带与三叠纪岩相古地理及膏盐层分布(据王文斌等,1994;范洪源等,1995;毕仲其和丁保良,1997;侯增谦等,2004略修改)Fig.1 Map of Triassic lithofacies-paleogeography,showing the distribution of anhydrock sequences and related mineral deposits in the Middle-Lower Yangtze area(modified after Wang et al.,1994;Fan et al.,1995;Bi and Ding,1997;Hou et al.,2004)

1 长江中下游玢岩铁矿的主要类型和地质特征

长江中下游多金属成矿带位于扬子板块北缘,华北板块和秦岭-大别造山带南侧。在早白垩世135Ma后,长江中下游区域构造体制发生了重大转变,进入太平洋构造体制,主构造线方向由近EW转换为NE-NNE。太平洋板块斜向俯冲、岩石圈拆沉、软流圈上涌加剧,区域伸展作用加强。这种后期构造叠加在早期基底之上,在区内形成众多隆起区和继承性断陷盆地,并爆发大规模火山岩浆活动和成矿作用,形成了一系列大中型玢岩型、斑岩型、矽卡岩型和热液型Fe-Cu-Au-Mo-Pb-Zn等矿床(常印佛等,1991;翟裕生等,1992;董树文等,2010;周涛发等,2008;Mao et al.,2011)(图1)。玢岩铁矿主要分布在侏罗纪-白垩纪陆相断陷火山沉积盆地之中,从西到东依次为怀宁、庐枞、滁州、繁昌、宁芜、溧水、溧阳盆地。宁芜和庐枞火山岩盆地是其典型代表,火山盆地规模大,铁矿最为发育。下面以宁芜火山盆地及赋存的玢岩铁矿为例,做一简要介绍。

宁芜火山盆地以方山-小丹山断裂,长江断裂带,芜湖断裂和南京-湖熟断裂为边界,从南京至芜湖呈NE-SW向展布,长约60km,宽约20km,总面积1200km2,中生代火山岩和玢岩铁矿床广泛发育。该盆地从下至上分为三个构造层:下部构造层由前火山岩系的地层组成,构成了盆地的“基底”,中部构造层由火山岩系组成,上部构造层由火山岩系之后的地层组成(宁芜研究项目编写小组,1978)。宁芜盆地基底地层主要有三叠纪上青龙组(T1s)海相碳酸盐建造,周冲村组(T2z)白云质灰岩、膏岩层和泥质灰岩,黄马青组(T2h)紫红色钙质粉砂岩、粉砂质页岩和页岩;侏罗纪象山群(J1-2x)陆相碎屑岩建造,西横山组(J3x)类磨拉石建造;白垩纪早期火山岩-次火山岩在盆地中广泛发育;此后浦口组(K2p)砂岩、砾岩,赤山组(K2c)细砂岩、粉砂岩以及第三纪砂砾岩覆盖于火山岩之上(宁芜研究项目编写小组,1978;胡文瑄,1991;翟裕生等,1992;唐永成等,1998)。盆地中白垩纪火山岩被划分为四个火山喷发喷溢旋回,从早到晚依次为龙王山组、大王山组、姑山组和娘娘山组,各火山岩旋回以爆发相开始,此后溢流相增多,最后以火山沉积相结束。在大王山组火山活动之后,火山喷发活动变弱,岩浆侵入活动增强,广泛发育与铁矿床形成关系密切的辉石闪长岩-辉石闪长玢岩。矿体往往围绕着一个火山-侵入活动中心分布。

图3 宁芜凹山矿田玢岩铁矿的主要矿石类型(a)-凹山矿床角砾状矿石,角砾为含浸染状磁铁矿的辉石闪长玢岩,胶结物为磁铁矿;(b)-凹山矿床伟晶状磷灰石-磁铁矿-阳起石矿石;(c)-高村矿床磁铁矿-阳起石-磷灰石矿脉穿切早期浸染状矿石Fig.3 Photos of main ore types of Washan ore field in Ninbgwu ore district(a)-breccia ore from Washan deposit.The breccia is pyroxene diorite porphyrite with disseminated magnetite,and binding material is mainly magnetite;(b)-pegmatitic magnetite-catinolite-apatite vein from Washan deposit;(c)-magnetite-catinolite-apatite vein cut earlier disseminated magnetite ore

宁芜盆地内4组火山岩的锆石U-Pb年龄分别为:龙王山组 134.8±1.8Ma;大王山组 132.2±1.6Ma、130.3±0.9Ma;姑山组 129.5±0.8Ma、128.2±1.3Ma、128.5±1.8Ma;娘娘山组126.8±0.6Ma(周涛发等,2011;侯可军和袁顺达,2010)。含矿辉石闪长玢岩的锆石U-Pb年龄集中分布在128~132Ma之间(侯可军和袁顺达,2010;范裕等,2008,2010;段超等,2011)。矿后花岗闪长斑岩的锆石U-Pb年龄为126~128Ma(侯可军和袁顺达,2010;段超等,2011;Duan et al.,2012)。宁芜玢岩铁矿的成矿年龄为~130Ma,多形成于大王山组火山岩旋回晚期。

宁芜火山盆地玢岩铁矿分为三个矿田,从北至南依次是:梅山矿田、凹山矿田和钟姑矿田。典型矿床有梅山、凹山、高村(陶村)、南山、东山、和尚桥、姑山、钟山、和睦山、白象山、杨庄铁矿床等(图2)。铁矿床主要赋存于辉石闪长玢岩岩体隆起部位与火山岩接触带附近的辉石闪长玢岩岩体之中。铁矿床以透辉石(阳起石)-磷灰石-磁铁矿三矿物组合为特色,普遍含有石膏,富磷、钒和钛。矿床围岩蚀变强烈,以钠化(钠长石化)、钾化(钾长石化)、氯化(钠柱石、方柱石)和石膏化、黄铁矿化为特色。围岩蚀变具有明显的分带,从下而上相应的可分为三个带:下部浅色蚀变带,分布在岩体之中,主要由早期蚀变产物透辉石、钠长石、钾长石构成;中部深色蚀变带分布在岩体上部至接触带附近的安山质火山岩中,主要由早期的石榴子石、透辉石、磁铁矿、石膏及中期叠加的绿泥石、绿帘石等组成;上部浅色蚀变带分布于接触带之上的安山质火山岩中,主要发育有黄铁矿化、硅化、石膏化和泥化等(宁芜项目研究编写小组,1978)。矿石矿物主要有磁铁矿、赤铁矿、菱铁矿和黄铁矿,脉石矿物主要有透辉石、阳起石、磷灰石、石膏、绿泥石、绿帘石、石榴石、钠长石、钾长石、方柱石和石英、方解石、高岭石等组成。矿石结构构造以浸染状、块状、角砾状、脉状和伟晶状为主(图3)。不同种类的矿石之间穿切关系明显,由早到晚分别为浸染状/块状矿石→角砾状矿石→网脉状矿石→伟晶状矿石。浸染状矿石主要分布于凹山矿田,位于矿体的下部,磁铁矿呈浸染状发育于辉石闪长玢岩中;块状矿石主要分布姑山和梅山矿田,磁铁矿/赤铁矿粒度细,气孔状构造发育;角砾状矿石多分布于矿体的边部,磁铁矿胶结辉石闪长玢岩或含浸染状磁铁矿矿石,角砾多发育绿泥石化、阳起石化和钠长石化;粗粒脉状磁铁矿矿石分布于矿体的中部,矿物组合主要为阳起石-磁铁矿-磷灰石,阳起石含量较多,呈纤维状集合体,磁铁矿呈中-粗粒自形晶,磷灰石含量较少,脉体围岩多发育钠长石化;伟晶状磁铁矿矿石分布于矿体的上部,矿物组合主要为磷灰石-磁铁矿-(阳起石),磷灰石与磁铁矿含量多达70% ~90%,呈伟晶状,自形-半自形,阳起石含量较少。在近地表氧化带中,磁铁矿多被氧化为赤铁矿。后期发育有黄铁矿、赤铁矿、菱铁矿、镜铁矿、石英脉、方解石脉等。

宁芜玢岩铁矿矿化类型复杂多样,既有铁矿浆贯入式,也有热液交代-充填式(宁芜项目研究编写小组,1978;李秉伦和谢奕汉,1984;宋学信等,1981;Hou et al.,2010,2011)。矿浆贯入式矿体以赤铁矿为主,矿石品位特富,块状、气孔状和角砾状构造发育,多数与围岩界线截然。矿化类型与基底地层的埋深具有明显的相关性。位于宁芜盆地南段的姑山矿田基底地层埋藏最浅,区内见有上青龙组和黄马青组地层出露,姑山矿床主体为矿浆型;位于宁芜盆地北段的梅山矿田基底地层埋藏也比较浅,在凤凰山地区也见有上青龙组地层出露,梅山矿床则既有矿浆型矿体,也有热液交代-充填型矿体,二者密切共生;凹山矿田位于宁芜盆地的中部,火山岩系厚度巨大,矿床则以热液交代-充填型为主。区内玢岩铁矿的类型虽然不同,但成矿阶段和成矿过程非常相似,可以相互对比。

庐枞盆地岩浆火山侵入活动、成矿作用和形成时代与宁芜盆地非常相似(周涛发等,2010,2008,2011;Zhou et al.,2007;范裕等,2008,2012;吴明安等,2011;董树文等,2010)。比较而言,庐枞盆地铁矿体的埋藏较深,矿床中硫化物和石膏硫酸盐含量较高,发育独特的透辉石-石膏-磁铁矿(膏辉岩)和石榴石-石膏-磁铁矿组合,有些地段则形成了独立的硫铁矿和石膏矿矿体(图4、图5)。庐枞盆地的典型玢岩铁硫矿床有罗河、泥河、杨山、龙桥和大鲍庄。

图4 庐枞盆地泥河铁矿Ⅰ纵剖面图(据范裕等,2012修改)Fig.4 NumberⅠgeological longitudinal section map of Nihe deposit in Luzong basin(after Fan et al.,2012)

2 膏盐层与玢岩铁矿的关系

膏盐层是指富含石膏/硬石膏和石盐的蒸发岩地层;岩性通常为含石膏的白云岩、白云质灰岩或含石膏的灰岩,有些地段则形成石膏矿,常见石盐假晶。长江中下游地区膏盐层属于中下三叠统,相当于鄂东的嘉陵江组、安徽的马鞍山组和江苏的周冲村组,分布范围从鄂东经皖南到苏南,绵延500km,发育陶厂等大中型层状石膏/硬石膏矿床(点)30余处,石膏矿层厚度由数十米到数百米(蔡本俊,1980;范洪源等,1995;侯增谦等,2004)。长江中下游玢岩铁矿与三叠纪膏盐层关系密切,三叠纪蒸发盆地膏盐层分布与玢岩铁矿分布空间上完全一致(图1)。玢岩铁矿中普遍含有石膏,在有些矿床和地段石膏富集形成独立的石膏矿。玢岩铁矿-石膏矿-硫铁矿空间上紧密共生(图4、图5、图6),这既是长江中下游玢岩铁矿的一大特色,也是重要找矿标志。

长江中下游玢岩铁矿中钠化、钾化、钙化(透辉石化、透闪石化、阳起石化)和氯化(方柱石化、钠柱石化)、石膏化、碳酸盐岩化、黄铁矿化等普遍发育、规模大。在庐枞罗河、泥河铁矿和宁芜太山铁矿则形成了独特的膏辉岩(石膏-透辉石)组合,是辉石闪长玢岩岩浆与膏盐层高温反应的最好证据。岩浆岩和蚀变岩石中大量增加的碱金属(Na、K)、碱土金属(Ca、Mg)和矿化剂(Cl、F、CO2、SO4)等正是膏盐层的主要成分。这些碱金属和卤素元素是铁离子迁移搬运的重要络合剂,与铁矿化关系密切。

表1 宁芜和庐枞盆地玢岩铁矿、硫铁矿的硫同位素组成Table 1 Sulfur isotopic compositions of porphyrite iron ore and pyrite ore from Ningwu and Luzong basin,China

图5 罗河铁、硫矿床I线纵剖面图(据胡文瑄和徐克勤,1992)1-硬石膏矿;2-铁矿;3-硫铁矿;Sh-双庙组火山岩;Zh1-2-砖桥组各岩性段火山岩;L-龙门院组火山岩;DA-硬石膏透辉石岩(膏辉岩);FrP-碱性长石蚀变岩;Si-硅质岩或/和硅化岩;δμ-辉石粗安玢岩Fig.5 Number Ⅰ Geological longitudinal section map of Luohe deposit in Luzong basin(after Hu and Xu,1992)1-anhydrite ore body;2-iron ore body;3-pyrite ore body;Sh-Shuangmiao Formation; Zh1-2-Zhuanqian Formation; LLongmenyuan Formation;DA-diopside-anhydrite;FrP-alkali feldspar alteration;Si-silicification;δμ-diorite porphyrite

3 膏盐层控矿的硫同位素证据

玢岩铁矿中普遍存在石膏等硫酸盐矿物。在硫酸盐-硫化物体系中,硫酸盐强烈富集34S,硫化物刚好相反。如果矿床中的硫主要来自深源岩浆,δ34S∑SV-CDT≈0,根据质量平衡,在硫酸盐和磁铁矿/赤铁矿普遍存在的情况下,硫化物的δ34SV-CDT应为很低的负值(Ohmoto and Rye,1979)。我们分析统计了长江中下游玢岩铁矿中硫化物和石膏的硫同位素组成,结果列于表1,示于图7、图8、图9。由图表可以看出,宁芜玢岩铁矿及伴生硫铁矿中黄铁矿的δ34SV-CDT值普遍较高,平均值均在5‰以上,姑山矿田达到10‰以上,远高于幔源硫的分布范围。在已知的成矿条件下,幔源岩浆硫(δ34S∑SV-CDT≈0)无论如何都不可能演化出如此高的δ34SV-CDT值。矿床中石膏的δ34SV-CDT值大部分分布在20‰左右,与三叠纪海相硫酸盐及区内周冲村组膏盐层中硬石膏的硫同位素组成(28.0‰~28.2‰)(储雪蕾等,1986)相似,说明玢岩铁矿和硫铁矿中的硫主要来自区内中下三叠统膏盐层,而不是来自原始岩浆。玢岩铁矿中硫化物的硫同位素组成主要取决于原始岩浆硫和膏盐层硫所占比例及膏盐层硫酸盐的还原温度和成矿系统的氧逸度。在矿床中石膏普遍存在、铁矿-石膏矿密切共生的条件下,矿床中硫化物的硫同位素组成则主要取决于原始岩浆硫和膏盐层硫所占比例及膏盐层硫酸盐的还原温度,膏盐层硫所占比例和硫酸盐的还原温度越高,硫化物的δ34SV-CDT值越高;反之原始岩浆硫所占比例越高,硫酸盐的还原温度越低,硫化物的δ34SV-CDT值也越低。

图6 宁芜盆地姑山南部73101线地质剖面图(据林刚和许德如,2010)1-第四系;2-膏盐层;3-黄马青组;4-周冲村组;5-闪长玢岩;6-闪长岩;7-铁矿体+石膏;8-断裂Fig.6 Geological sections map of 73101 line in the south of Gushan deposit(after Lin and Xu,2010)1-Quaternary;2-saltlayers;3-Huangmaqing Formation;4-Zhoucongcun Formation;5-diorite porphyrite;6-diorite;7-iron ore body+gypsum;8-fault

图7 宁芜玢岩铁矿和硫铁矿的硫同位素组成Fig.7 Sulfur isotope characteristics of iron ore in Ningwu basin

图8 庐枞盆地罗河铁矿黄铁矿和石膏的硫同位素组成(据储雪蕾等,1984;黄清涛和尹恭沛,1989)Fig.8 Sulfur isotope characteristics of Luohe deposit in Luzong(after Chu,1984;Huang and Yin,1989)

庐枞盆地罗河和泥河玢岩铁矿中黄铁矿的硫同位素变化范围较大,磁铁矿阶段黄铁矿的δ34SV-CDT值明显高于硫化物阶段黄铁矿的值。罗河铁矿中黄铁矿的δ34SV-CDT值自下而上逐渐降低,硬石膏的δ34SV-CDT值随深度变化不明显(储雪蕾等,1984,黄清涛和尹恭沛,1989)(图9),说明成矿溶液中硫酸盐硫占绝对优势,硫酸盐的硫同位素组成基本代表了成矿热液中总硫的硫同位素组成,黄铁矿的硫同位素组成主要取决于硫酸盐-黄铁矿之间的硫同位素分馏(△34S),也就是硫酸盐-黄铁矿的平衡温度。从下至上,成矿温度逐渐降低,二者之间的硫同位素分馏不断增大,在SO42-占绝对优势的含硫热液成矿系统,黄铁矿的δ34SV-CDT值则随着温度的降低而不断减少,而硫酸盐的δ34SV-CDT值则基本保持不变。假设原始岩浆硫的δ34SV-CDT值为0‰,三叠纪膏盐层的δ34SV-CDT值为28‰(储雪蕾等,1986),矿床中石膏的δ34SV-CDT值代表成矿热液中总硫的硫同位素组成,则可以根据矿床中石膏和膏盐层的硫同位素组成,利用二元混合模式估算矿床中膏盐层硫所占的比例。计算结果表明矿床中60%~80%的硫来自周冲村组膏盐层。若以20‰代表膏盐层的硫同位素组成,计算出的膏盐层硫所占比例更高。

图9 庐枞罗河铁矿黄铁矿和石膏的硫同位素组成随深度的变化(据储雪蕾等,1984;黄清涛和尹恭沛,1989)Fig.9 Variation of sulfur isotope characteristics with depth in Luohe deposit in Luzong(after Chu,1984;Huang and Yin,1984)

统计结果显示矿床中黄铁矿的硫同位素组成与矿床成因类型密切相关。宁芜盆地姑山矿田黄铁矿的δ34SV-CDT值最高,为10.8‰,梅山矿田次之,为7.85‰,凹山矿田最低,为5.01‰(图7);矿床成因类型也发生了相应变化,矿浆型→矿浆-热液型→热液型。根据黄铁矿与硫酸盐的硫同位素平均值计算出的硫酸盐的平均还原温度450~580℃(表1),姑山>梅山>凹山。储雪蕾等(1984)计算出的罗河铁矿浅色蚀变带的硫同位素地质温度为240~340℃,与其他方法获得温度基本一致,深色蚀变带的硫同位素温度异常高,534~961℃,大部分在600℃以上,明显高于其他方法获得的温度(表2),因而认为深色蚀变带中硫酸盐-硫化物之间没有达到硫同位素平衡。实际上该温度可能真实地反映了硫酸盐的最低还原温度,表明硫酸盐的还原主要是在岩浆与膏盐层的同化混染过程中发生的,只是深色蚀变带中硫化物的沉淀就位时间稍晚,沉淀温度较低,硫酸盐-硫化物之间尚未达到新的硫同位素平衡。

表2 庐枞罗河铁矿硫同位素地质温度计算结果与其他测温结果的对比Table 2 A contrast of temperature between calculated by sulfur isotope thermometry and other methods,Luohe iron deposit in Luzong ore district

4 讨论

铁在硅酸盐熔体、矿物和水溶液中主要以Fe2+存在,在成矿溶液中以Na-Fe-Cl3等络合物的形式搬运(刘玉山等,1981;Chou and Eugster,1977;Zhang et al.,2014;张招崇等,2014)。在铁矿中则主要以Fe3+(Fe3O4/Fe2O3)形式存在(菱铁矿除外)。因此铁矿的形成不仅需要丰富的Fe成矿物质、Cl-、Na+等矿化剂,同时需要将Fe2+氧化成Fe3+。膏盐层富含SO42-、CO32-、Cl-和 Ca2+、Mg2+、Na+、K+等组分,不仅可以为铁矿化提供上述矿化剂,使成矿物质活化迁移;膏盐层还是地壳深部最重要的氧化障,使熔体和热液中Fe2+氧化富集沉淀,这可能是玢岩铁矿与膏盐层关系密切的根本原因。关于膏盐层为铁矿提供矿化剂的作用,国内外已有很多专家学者开展过研究(蔡本俊,1980;Barton and Johnson,1996;Sillitoe,2003),但膏盐层氧化障在铁矿成矿中作用国内外鲜有报道(李延河等,2013)。

4.1 岩浆熔体的氧化

铁在硅酸盐熔体中主要以Fe2+形式存在。在地壳深部岩浆房中炽热岩浆与膏盐CaSO4发生同化混染时,SO42-将硅酸盐熔体中的Fe2+氧化成Fe3+,Fe3+无法进入硅酸盐矿物晶格之中,而形成Fe3O4/Fe2O3,导致熔体中Fe2+含量降低,使本应形成的铁辉石转化为透辉石、铁闪石则转变为透闪石等贫铁矿物;SO42-被首先还原为SO2,SO2是气体氧化剂,可以快速扩散进入熔体;SO2进一步氧化 Fe2+形成Fe3O4,SO2最终被还原形成H2S/FeS2。宁芜和庐枞地区广泛发育的透辉石/阳起石化和膏辉岩化等很好地证明了这一点。基本反应形式如下:

岩浆熔体中的铁氧化物在磷、水和NaCl等盐类物质作用下,在岩浆房中与硅酸盐熔体发生液态不混熔,熔离形成铁矿浆,在构造有利部位充填形成矿浆型铁矿床。岩浆熔离/分异形成铁矿浆的作用过程并非专属于基性-超基性岩浆作用,中酸性岩浆熔离/分异作用也可形成铁矿浆。Philpotts(1967)所做的闪长岩-磁铁矿-磷灰石系统的熔离实验证实了这一点。苏良赫(1984)所做的FeO-Ca5(PO4)3FNaAlSiO4-CaMgSiO6实验、袁家铮(1990)所做的方铁矿-磷灰石-透辉石-霞石四元系实验和喻学惠(1984)所做的 FeOCaMgSi2O6-KMg3(AlSi3O10)F2实验,均证明了中-酸性岩浆在磷等挥发分的参与下可以熔离出铁矿浆。磷的参与是岩浆发生液态不混溶形成铁矿浆的重要因素,但不是唯一因素。富铁岩浆熔体与膏盐层氧化障的同化混染,熔体氧逸度升高可能是形成铁矿浆的必要条件,NaCl、H2O等盐类物质和挥发份的加入是岩浆发生液态不混熔形成铁矿浆的重要因素。Snyder et al.(1993)实验证明在富铁玄武质岩浆体系氧逸度升高将引起铁氧化物大量提前形成。铁氧化物在硅酸盐液相线温度之上提前形成有利于铁氧化物熔体的形成(Naslund,1983)。岩浆与膏盐层的反应将导致岩浆体系的氧逸度快速大幅度升高,使铁氧化物在熔体中大规模提前形成。最近Veksler et al.(2007,2008)采用高温原位离心熔离技术实验研究了玄武质岩浆和K2O-CaO-FeO-Al2O3-SiO2岩浆体系的液相不混熔,结果表明富铁-富硅熔体不仅可以通过分离结晶产生,也可以通过硅酸盐的液相不混熔形成,而且液相不混熔不是发生在传统观念认为的岩浆结晶的最后阶段,而是在较早阶段,这为铁矿浆的形成提供了新的实验依据。火山岩中富铁-富硅熔融包裹体的发现进一步证实了上述实验结果(Philpotts,1982)。

在玢岩铁矿中矿浆充填型铁矿床(体)应该是很普遍的成矿形式,只是以前人们没有认识到或没有识别出来而已。虽然还存在争论,但智利、瑞典Kiruna型铁矿和宁芜姑山、梅山部分矿体的矿浆成因已得到很多人的认可(Park,1961;Nystroem and Henriquez,1994;Henriquez et al.,2003;宁芜研究项目编写小组,1978;宋学信等,1981;Hou et al.,2010)。矿浆贯入式矿石品位特富,多呈块状产出,气孔状和角砾状构造发育(图10)。最近在钟姑矿田杨庄铁矿下部发现的铁矿体与闪长玢岩的渐变过渡关系(从致密块状细粒磁铁矿经稠密浸染→浸染→稀疏浸染状磁铁矿渐变为浅灰色闪长玢岩)为铁矿浆的形成过程提供了很好的野外证据。根据玢岩铁矿中硫酸盐-硫化物的硫同位素组成计算出的硫酸盐最低还原温度多分布在450~600℃之间(表1),罗河铁矿深色蚀变带的硫同位素温度大部分在600℃以上,最高达到961℃,为玢岩铁矿的矿浆成因提供了理论依据。矿石的气孔状构造是判定矿浆成因的重要证据,但不是唯一的证据,深部岩浆不混熔形成的矿浆,因气体无法逸出,气孔状构造则可能不发育。

Hou et al.(2011)对姑山闪长玢岩中的单斜辉石斑晶进行了电子探针分析,结果发现,从中心到边缘,Fe含量存在从逐渐升高到突然降低而后又慢慢升高的现象。提出铁含量的突然降低是发生铁矿浆熔离的结果;认为富铁的辉长质岩浆在上升过程中混染了富磷的地层,导致了不混熔,形成铁矿浆以及贫铁的闪长质岩浆。实际上区域内并没有特别富磷的地层。岩浆在上升过程中与膏盐层同化混染,导致系统氧逸度快速升高,熔体中Fe2+被氧化成Fe3+,形成大量Fe3O4/Fe2O3,熔体中Fe2+浓度降低,可能才是形成铁矿浆的真正原因,磷、水、NaCl等挥发分和盐类物质可能促进了熔体的不混熔和铁矿浆的熔离。因此岩浆与膏盐层的同化混染是导致铁矿浆形成的关键因素。

铁矿浆的形成需要几个条件:①膏盐层规模大,能够将硅酸盐熔体中的铁充分氧化,形成足够铁氧化物;②岩浆房温压条件和组分适合铁矿浆熔离/结晶分离;③熔体中铁氧化物有充足的聚集熔离时间。

4.2 成矿热液的氧化

以溶液形式搬运的Fe2+遇到膏盐层氧化障时被快速氧化,生成铁氧化物,在原地或迁移一段距离后随着温度降低,沉淀富集形成热液交代型/热液充填型铁矿床。基本反应如下:

在同一个玢岩铁矿床中,矿浆充填和热液交代/充填型矿化作用可能同时存在,只是有的矿体以矿浆充填型为主,有的矿体以热液交代-充填型为主,但矿浆型铁矿没有引起应有的重视。二者在空间上具有一定的分带性,矿浆型矿石带主要赋存深部成矿岩体与膏盐层接触带附近,向上逐渐过渡为热液交代-充填型矿石带;时间上矿浆型铁矿形成较早。

4.3 膏盐的还原

膏盐将Fe2+氧化成Fe3+并富集形成铁矿床的同时,石膏等硫酸盐自身被还原,形成H2S/S2-,向成矿系统提供硫源,S2-与Fe2+结合,形成黄铁矿等硫化物。因此玢岩铁矿、硫铁矿与石膏矿密切共生(图4、图5、图6)。矿床中黄铁矿的 δ34SV-CD值普遍较高(表1、表2、图7、图8、图9),根据石膏-硫化物矿物对计算出的硫酸盐最低还原温度多在450℃之上。这暗示大部分S2-可能是在岩浆熔体与膏盐层的高温反应过程中形成的,只是硫化物的沉淀温度相对较低,就位时间较晚而已。伴生硫铁矿与玢岩铁矿具有相似的成矿机制,二者属于同一成矿系列。

5 火山盆地的“双层成矿结构”

在岩浆上侵过程中,首先穿越深部的三叠纪膏盐层。岩浆熔体与膏盐层发生同化混染和氧化还原作用,硅酸盐熔体中的Fe2+被氧化成Fe3+,Fe3+无法进入硅酸盐矿物晶格,而形成Fe3O4/Fe2O3,进入熔体。铁氧化物在磷、水和NaCl等盐类物质作用下,在岩浆房中与硅酸盐熔体发生液态不混熔,形成铁矿浆。铁矿浆温度高,粘滞性强,难以长距离迁移,因此大部分铁矿浆充填型-接触交代型铁矿体一般赋存于成矿岩体与膏盐层的接触带附近,少量铁矿浆在盖层较薄和构造有利部位,随岩浆上侵到早期火山岩之中,形成姑山、梅山等矿浆充填型矿床。在火山盆地中心,火山岩盖层很厚,矿浆难以穿越,而以络合物形式搬运的成矿热液流动性强,迁移距离远,可以在远离岩体与膏盐层接触带部位富集沉淀。因此在盆地中部凹山地区浅层火山岩中仅发育热液交代-充填型铁矿。膏盐在岩浆-热液的作用下也会发生迁移和再沉淀,在有些地段富集形成脉状-透镜状石膏矿。

宁芜和庐枞火山盆地可能存在“双层成矿结构”(高道明和赵云佳,2008;周涛发等,2011),在盆地深部岩体与膏盐层的接触部位产出“大冶式”矿浆充填-接触交代型富铁矿体,规模可能超过了赋存于浅部火山-次火山中的“热液型玢岩铁矿”。最近在姑山矿田杨庄铁矿下部成矿岩体与黄马青组地层接触带部位发现的巨厚富矿体及在庐枞盆地罗河铁矿下部2000多米深处发现的厚层富铁矿就是最好的证明。位于宁芜盆地南北两端的姑山和梅山地区,白垩纪火山岩盖层的厚度较小,赋存于深部岩体与膏盐层的接触部位的“大冶式”矿浆充填-接触交代型富铁矿体埋藏也比较浅,是找寻“大冶式”矿浆充填-接触交代型富铁矿的有利地段;位于宁芜盆地中心的凹山地区,其深部可能也存在“大冶式”矿浆充填-接触交代型富铁矿体,由于火山岩盖层的厚度较大,埋藏可能较深(图11)。

6 结论

(1)长江中下游中三叠统周冲村组膏盐层不仅为玢岩铁矿的成矿提供大量Na+、Cl-等矿化剂,使围岩发生钠化和氯化等蚀变、Fe2+以Na-Fe-Cl3等络合物形式搬运,膏盐层还是地壳深处最重要的氧化障,能够将硅酸盐熔体和成矿溶液中的Fe2+氧化成Fe3+,使铁富集形成铁矿床,是玢岩铁矿成矿和控矿的关键因素。

(2)在岩浆上侵过程中,首先穿越三叠纪膏盐层。岩浆与膏盐层发生同化混染和氧化还原反应,硅酸盐熔体中的Fe2+被氧化成Fe3+,Fe3+无法进入硅酸盐矿物晶格,而形成Fe3O4/Fe2O3,铁氧化物在磷、NaCl和水等组分的作用下,在岩浆房中与硅酸盐熔体发生液态不混熔,形成铁矿浆,矿浆沿构造有利部位充填,形成矿浆型铁矿床。以溶液形式迁移的反应生成Fe3+,沉淀富集形成热液交代型/热液充填型铁矿床。膏盐在岩浆-热液作用过程中也会发生迁移和再沉淀,在膏盐层上部形成石膏矿。

图11 长江中下游玢岩铁矿“双层成矿结构”1-梅山铁矿;2-凹山铁矿;3-东山铁矿;4-高村铁矿;5-和睦山铁矿;6-白象山铁矿;7-姑山铁矿Fig.11 “Double-Metallogenic Structure”of iron porphyrite deposits1-Meishan deposit;2-Washan deposit;3-Dongshan deposit;4-Gaocun deposit;5-Hemushan deposit;6-Baixiangshan deposit;7-Gushan deposit

(3)在SO42-将熔体和溶液中Fe2+氧化成Fe3+的同时,自身被还原为S2-,向成矿系统提供硫源,S2-与Fe2+结合形成硫铁矿矿床。玢岩铁矿与硫铁矿空间上密切共生,二者具有内在成因联系和相似的成矿机制,属于同一成矿系列。

(4)矿床中的硫60%~80%来自膏盐层硫酸盐的还原,还原温度多在450℃以上。膏盐层硫酸盐所占比例和硫酸盐还原温度越高,硫化物的δ34SV-CDT值越高。硫化物的沉淀温度较硫酸盐的还原温度低,就位时间晚。

(5)在玢岩铁矿中,矿浆型和热液型矿体同时存在,二者在空间上具有明显的分带,垂向上呈“双层成矿结构”。在盆地深部岩体与膏盐层的接触带附近主要产出“大冶式”矿浆充填-接触交代型富铁矿床,在浅部火山-次火山岩中则主要发育热液交代-充填型铁矿。位于宁芜盆地南北两端的姑山和梅山矿田是找寻“大冶式”矿浆充填-接触交代型富铁矿的有利地段。

致谢 在野外工作期间得到了马钢集团南山矿业公司和姑山矿业公司的大力支持与帮助;二位审稿专家提出了富有建设性的修改意见;在此一并致谢。

Barton MD and Johnson DA.1996.Evaporitic-source model for igneousrelated Fe oxide-(REE-Cu-Au-U)mineralization.Geology,24(3):259-262

Bi ZQ and Ding BL.1997. Sedimentary environments of Triassic evaporate formations in the Lower Yangtze River region.Volcnology and Mineral Resources,18(2):127 -136(in Chinese with English abstract)

Cai BJ.1980.The relationship of gypsum salt beds with endogenic copper and iron ores in the Middle-Lower Yangtze Valley.Geochimica,(2):193-199(in Chinese with English abstract)

Chang YF,Liu XP and Wu YC.1991.The Copper-Iron Belt of the Lower and Middle Reaches of the Changjiang River.Beijing:Geological Publishing House,1-379(in Chinese)

Chou IM and Eugster HP.1977.Solubility of magnetite in supercritical chloride solutions.Amer.J.Sci.,277(10):1296 -1314

Chu XL,Chen JS and Wang SX.1984.Sulfur isotopic temperatures and their significance ofLuohe iron depositin AnhuiProvince.Geochimica,12(4):350-356(in Chinese with English abstract)

Chu XL,Chen JS and Wang SX.1986.Study on fractionation mechanism of sulfur isotope and physicochemical conditions of alteration and ore formation in Luohe iron deposit,Anhui.Scientia Geologica Sinica,26(3):189-195(in Chinese with English abstract)

Ding Y.1992.A new theory converning the origin of the Ningwu(Nanjing-Wuhu)porphyritic iron deposits:Assimilation-high-level emplacement-aggregation of ferruginous substance.Mineral Deposits,11(3):195-202(in Chinese with English abstract)

Dong SW,Xiang HS,Gao R,Lü QT,Li JS,Zhan SQ,Lu ZW and Ma LC.2010.Deep structure and ore formation with in Lujiang-Zongyang volcanic ore concentrated area in Middle to Lower Reaches of Yangtze River.Acta Petrologica Sinica,26(9):2529 -2542(in Chinese with English abstract)

Du JG and Chang DY.2011.Consideration on the deep-rion deposits prospecting in the Middle-Lower Yangtze Metallogenic Belt.Acta Geologica Sinica,85(5):687-698(in Chinese with English abstract)

Duan C,Mao JW,Li YH,Hou KJ,Yuan SD,Zhang C and Liu JL.2011.Zircon U-Pb geochronology of the gabbro-diorite porphyry and granodiorite porphyry from Washan iron deposit in Ningwu basin,and its geological significance.Acta Geologica Sinica,85(7):1159-1171(in Chinese with English abstract)

Duan C,Li YH,Hou KJ,Yuan SD,Zhang C and Liu JL.2012.Late Mesozoic ore-forming events in Ningwu Ore district,Middle-Lower Yangtze River polymetallic ore belt,East China:Evidences from zircon U-Pb geochronology and Hf isotopic compositions of the granitic stocks.Acta Geologica Sinica,86(3):719 -736

Duan C,Li YH,Yuan SD,Hu MY,Zhao LH,Chen XD,Zhang C and Liu JL.2012.Geochemical characteristic of magnetite from Washan iron deposit in Ningwu ore district and its constraints on ore-forming.Acta Petrologica Sinica,28(1):243-257(in Chinese with English abstract)

Fan HY,Li WD and Wang WB.1995.On the relationship between the marine Triassic evaporate horizons and Cu(Au),Fe deposits in the Middle-Lower Yangtze area.Volcanology and Mineral Resources,16(2):32-41(in Chinese with English abstract)

Fan Y,Zhou TF,Yuan F,Qian CC,Lu SM and Cooke DR.2008.LAICP-MS zircon U-Pb ages of the A-type granites in the Lu-Zong(Lujiang-Zongyang)area and their geological significances.Acta Petrologica Sinica,24(8):1715 -1724(in Chinese with English abstract)

Fan Y,Zhou TF,Yuan F,Zhang LJ,Qian B,Ma L and Cooke DR.2010.Geochronology of the diorite porphyrites in Ning-Wu basin and their metallogenic significances.Acta Petrologica Sinica,26(9):2715-2728(in Chinese with English abstract)

Fan Y,Zhou TF,Hao L,Yuan F,Zhang LJ and Wang WC.2012.Oreforming fluid characteristic of Nihe iron deposit in Lu-Zong basin,Anhui Province and its significance to ore genesis.Acta Petrologica Sinica,28(10):3113-3124(in Chinese with English abstract)

Frutos JJ and Oyarzun JM.1975.Tectonic and geochemical evidence concerning the genesis of El Laco magnetite lava flow deposits,Chile.Economic Geology,70(5):988-990

Gao DM and Zhao YJ.2008.Rerecognition of porphyrite iron ore deposit.Geology of Anhui,18(3):164 - 168(in Chinese with English abstract)

Haller AD and Fontbote L.2009.The raúl-condestable iron oxide coppergold deposit,central coast of Peru:Ore and related hydrothermal alteration, sulfur isotopes, and thermodynamic constraints.Economic Geology,104(3):365-384

Henriquez F,Naslund HR,Nystrom JO,Vivallo W,Dobbs FM and Lledo H.2003.New field evidence bearing on the origin of the El Laco magnetite deposit,northern Chile:A discussion.Economic Geology,98(7):1497-1502

Hou KJ and Yuan SD.2010.Zircon U-Pb age and Hf isotopic composition of the volcanic and sub-volcanic rocks in the Ningwu basin and their geological implications.Acta Petrologica Sinica,26(3):888-902(in Chinese with English abstract)

Hou T,Zhang ZC,Encarnacion J,Du YS,Zhao ZD and Liu JL.2010.Geochemistry of Late Mesozoic dioritic porphyries associated with Kiruna-style and stratabound carbonate-hosted Zhonggu iron ores,Middle-Lower YangtzeValley,eastern China:Constraintson petrogenesis and iron sources.Lithos,119(3-4):330-344

Hou T,Zhang ZC and Kusky T.2011.Gushan magnetite-apatite deposit in the Ningwu basin,Lower Yangtze River Valley,SE China:Hydrothermal or Kiruna-type?Ore Geology Reviews,43(1):333 -346

Hou ZQ,Yang ZS,Li YQ,Zeng PS,Meng YF,Xu WY and Tian SH.2004.Large-scale migration of fluids towards foreland basins during collisional orogeny:Evidence from Triassic anhydrock sequences and regional alteration in Middle-Lower Yangtze area.Mineral Deposits,23(3):310-326(in Chinese with English abstract)

Hu WX,Hu SX and Zhao YC.1991.Sedimentary genesis of anhydrite deposits in the volcanic series and their relation to the pyrite deposits in Xiangshang district Anhui Province.Geoscience,5(2):164 -173(in Chinese with English abstract)

Hu WX and Xu KQ.1992.Study on Dabaozhuang-type pyrit deposits exhalation-sedimentation-superimposition-transformation sulfide deposits in the Lujiang-Zongyang Basin,Anhui Province.Scientia Geologica Sinica,(3):213-224(in Chinese with English abstract)

Huang QT and Yin GP.1989.Iron Ore Deposit of Luohe in Lujiang,Anhui Province.Beijing:Geological Publishing House,1-193(in Chinese)

Institute of Geochemistry,Chinese Academy of Sciences.1987.Ore-Forming Mechanism of Ningwu Type Iron Deposits.Beijing:Science Press,1-152(in Chinese)

Li BL and Xie YH.1984.Origin,classification,and ore-forming model of Ningwu type iron deposits in Ningwu area.Science in China(Series B),(1):80-86(in Chinese)

Li YH,Xie GQ,Duan C and Han D.2013.Effect of sulfate evaporate salt layer over the formation of skarn-type iron ores.Acta Geologica Sinica,87(9):1324-1334(in Chinese with English abstract)

Lin G and Xu DR.2010.Prospecting for Daye-type iron deposit in depth of porphyrite-type iron deposit:A case study of southern Ningwu iron deposits in Anhui Province.Mineral Deposits,29(6):427 - 436(in Chinese with English abstract)

Lin XD,Yao SZ and Zhang SZ.1984.A study on nature of ore-bearing fluids of“Daye Type”iron ore deposits in eastern Hubei,China.Earth Science,27(4):99-106(in Chinese with English abstract)

Liu YS,Cheng LX and Liao WP.1981.Expreimental studies on extraction of iron by reaction of diorite-porphyrite with chloride solution at elevated temperatures and pressures.Acta Gologica Sinica,(4):276-289(in Chinese with English abstract)

Mao JW,Xie GQ,Duan C,Pirajno F,Ishiyama D and Chen YC.2011.A tectono-geneticmodelforporphyry-skarn Cu-Au-Mo-Feand magnetite-apatite deposits along Middle-Lower Yangtze River Valley,Eastern China.Ore Geology Reviews,43(1):294 -314

Meinert LD,Dipple GM and Nicolescu S.2005.World Skarn Deposits.In:Hedenquist JW et al. (eds.). Economic Geology 100thAnniversary Volume,Society of Economic Geologists.Littleton,Colorado,USA:299-336

Naslund HR.1983.The effect of oxygen fugacity on liquid immiscibility in iron-bearing silicate melts.Amer.J.Sci.,283(10):1034-1059

Ningwu Research Group.1978.Magnetite Porphyry Deposits in Ningwu Area.Beijing:Geological Publishing House,1-196(in Chinese)

Nystroem JO and Henriquez F.1994.Magmatic features of iron ores of the Kiruna type in Chile and Sweden:Ore textures and magnetite geochemistry.Econ.Geol.,89(4):820 -839

Ohmoto H and Rye RO.1979.Isotopes of sulfur and carbon.In:Barnes HL(ed.). Geochemistry of Hydrothermal Ore Deposits.2ndEdition.New York:John Wiley and Sons,10:509-576

Park CF.1961.A magnetite“flow”in northern Chile.Econ.Geol.,56(2):431-436

Philpotts AR.1967.Origin of certain iron titanium oxide and apatite rocks.Econ.Geol.,62(3):303 -315

Philpotts AR.1982.Compositions of immiscible liquids in volcanic rocks.Contrib.Mineral.Petrol.,80(3):201 -218

Sillitoe RH.2003.Iron oxide-copper-gold deposits:An Andean view.Mineralium Deposita,38(7):787-812

Snyder D,Carmichael ISE and Wiebe RA.1993.Experimental study of liquid evolution in a Fe-rich,layered mafic intrusion:Constraints Fe-Ti oxide precipitation on the T-fO2and T-P paths of tholeiitic magmas.Contrib.Mineral.Petrol.,113(1):73 - 86

Song XX,Chen YC,Sheng JF and Ai YD.1981.On iron deposits formed from volcanogenic-hypabyssal ore magma.Acta Geologica Sinica,(1):41-54(in Chinese with English abstract)

Su LH.1984.The importance of liquid immiscibility in petrology and mineral deposits.Earth Science,(1):1 - 12(in Chinese with English abstract)

Tang YC,Wu YC,Chu GZ,Xing FM,Wang YM,Cao FY and Chang YF.1998.Geology of Copper-gold Polymetallic Deposits in the along-Changjiang Area of Anhui Province.Beijing:Geological Publishing House,1-351(in Chinese with English abstract)

Veksler IV,Dorfman AM,Borisov A,Wirth R and Dingwell DB.2007.Liquid immiscibility and evolution of basaltic magma.Journal of Petrology,49:2177-2186

Veksler IV,Dorfman AM,Borisov A,Wirth R and Dingwell DB.2008.Liquid unmixing kinetics and the extent of immiscibility in the system K2O-CaO-FeO-Al2O3-SiO2.Chemical Geology,256(3 -4):119-130

Wang WB,Li WD,Fan HY and Cheng ZF.1994.Controlling conditions of strata,lithofacies and paleogeography to copper-deposit concentration regions in Middle-Lower Yangtze River.Volcanoloy and Mineral Resources,15(3):33-41(in Chinese with English abstract)

Wu MA,Wang QS,Zheng GW,Cai XB,Yang SX and Di QS.2011.Discovery of Nihe iron deposit in Lujiang,Anhui,and its exploration significance.Acta Geologica Sinica,85(5):802 -809(in Chinese with English abstract)

Xiong XX and Yao CM.2000.Mineralogy of pyrites from the Xiangshan iron and pyrite deposits, Anhui Province. Acta Petrologica et Mineralogica,19(2):185-192(in Chinese with English abstract)

Yin YD,Liu ZH and Sheng RC.1996.Yuntaishan Pyrite deposit in Nanjing-Wuhu region: Geologial characters and genetic classification.Geology of Chemical Minerals,18(4):284-288(in Chinese with English abstract)

Yu XH.1984.The geological significance and the phase equilibrium experiments of wustite-fluor-phlogopite-diopside melt system at one bar and high temperature.Earth Science,(1):12 -18(in Chinese with English abstract)

Yuan JZ.1990.Iron ore type and genesis of Meishan iron ore deposit:The study of high temperature experiments.Geoscience,4(4):77-84(in Chinese with English abstract)

Zhai YS,Shi ZL,Lin XD,Xiong PF,Wang DY,Yao SZ and Jin ZM.1982.Genesis of“Daye Type”iron ore deposits in eastern Hubei,China.Earth Science,(3):239 -251(in Chinese with English abstract)

Zhai YS,Yao SZ,Lin XD,Zhou XN,Wan TF,Jin FQ and Zhou ZG.1992.Fe-Cu-AuMetallogenyoftheMiddle-LowerChangjiang Region.Beijing:Geological Publishing House,1 - 235(in Chinese)

Zhang ZC,Hou T,Santosh M,Li HM,Li JW,Zhang ZH,Song XY and Wang M.2014.Spatio-temporal distribution and tectonic settings of the major iron deposits in China:An overview.Ore Geology Reviews,57:247-263

Zhang ZC,Hou T,Li HM,Li JW,Zhang ZH and Song XY.2014.Enrichment mechanism of iron in magmatic-hydrothermal system.Acta Petrologica Sinica,30(5):1189 -1204(in Chinese with English abstract)

Zhao YX.1993.Mechanisms of Formation of the Contact Iron Deposits along the Middle-Lower Reaches of the Yangtze River.Wuhan:China University of Geosciences Press,1-120(in Chinese)

Zhou TF,Yuan F,Yue SC,Liu XD,Zhang X and Fan Y.2007.Geochemistry and evolution of ore-forming fluids of the Yueshan Cu-Au skarn-and vein-type deposits,Anhui Province,South China.Ore Geology Reviews,31(2):279 -303

Zhou TF,Fan Y,Yuan F,Lu SM,Shang SG,Cooke D,Meffre S and Zhao GC.2008.Geochronology of the volcanic rocks in the Luzong(Lujiang-Zongyang)basin and its significance.Science in China(Series D),51(10):1470-1482

Zhou TF,Fan Y,Yuan F,Song CZ,Zhang LJ,Qian CC,Lu SM and Cooke D.2010.Temporal-spatial framework of magmatic intrusions in Luzong volcanic basin in East China and their constrain to mineralization.Acta Petrologica Sinica,26(9):2694-2714(in Chinese with English abstract)

Zhou TF,Fan Y,Yuan F,Zhang LJ,Ma L,Qian B and Xie J.2011.Petrogenesis and metallogeny study of the volcanic basins in the Middle and Lower Yangtze metallogenic belt.Acta Geologica Sinica,85(5):712-730(in Chinese with English abstract)

附中文参考文献

毕仲其,丁保良.1997.下扬子区三叠系膏盐建造的沉积环境.火山地质与矿产,18(2):127-136

蔡本俊.1980.长江中下游地区内生铁铜矿床与膏盐的关系.地球化学,(2):193-199

常印佛,刘湘培,吴昌言.1991.长江中下游地区铜铁成矿带.北京:地质出版社,1-379

储雪蕾,陈锦石,王守信.1984.安徽罗河铁矿的硫同位素温度及意义.地球化学,12(4):350-356

储雪蕾,陈锦石,王守信.1986.罗河铁矿的硫同位素分馏机制和矿床形成的物理化学条件的研究.地质科学,26(3):189-195

丁毅.1992.宁芜玢岩铁矿成因新论同化作用、高侵位和铁质聚合.矿床地质,11(3):195-202

董树文,项怀顺,高锐,吕庆田,李建设,战双庆,卢占武,马立成.2010.长江中下游庐江-枞阳火山岩矿集区深部结构与成矿作用.岩石学报,26(9):2529-2542

杜建国,常丹燕.2011.长江中下游成矿带深部铁矿找矿的思考.地质学报,85(5):687-698

段超,毛景文,李延河,侯可军,袁顺达,张成,刘佳林.2011.宁芜盆地凹山铁矿床辉长闪长玢岩和花岗闪长斑岩的锆石U-Pb年龄及其地质意义.地质学报,85(7):1159-1171

段超,李延河,袁顺达,胡明月,赵令浩,陈小丹,张成,刘佳林.2012.宁芜矿集区凹山铁矿床磁铁矿元素地球化学特征及其对成矿作用的制约.岩石学报,28(1):243-257

范洪源,李文达,王文斌.1995.长江中下游海相三叠系膏盐层与铜(金)、铁矿床.火山地质与矿产,16(2):32-41

范裕,周涛发,袁峰,钱存超,陆三明,Cooke DR.2008.安徽庐江-枞阳地区A型花岗岩的LA-ICP-MS定年及其地质意义.岩石学报,24(8):1715-1724

范裕,周涛发,袁峰,张乐骏,钱兵,马良,Cooke DR.2010.宁芜盆地闪长玢岩的形成时代及对成矿的指示意义.岩石学报,26(9):2715-2728

范裕,周涛发,郝麟,袁峰,张乐骏,王文财.2012.安徽庐枞盆地泥河铁矿床成矿流体特征及其对矿床成因的指示.岩石学报,28(10):3113-3124

高道明,赵云佳.2008.玢岩铁矿再认识.安徽地质,18(3):164-168

侯可军,袁顺达.2010.宁芜盆地火山-次火山岩的锆石U-Pb年龄、Hf同位素组成及其地质意义.岩石学报,26(3):888-902

侯增谦,杨竹森,李荫清,曾普胜,蒙义峰,徐文艺,田世洪.2004.碰撞造山过程中流体向前陆盆地大规模迁移汇聚——来自长江中下游三叠纪膏盐建造和区域蚀变的证据.矿床地质,23(3):310-326

胡文瑄,胡受奚,赵玉琛.1991.安徽向山地区火山岩层中硬石膏的沉积成因特征及其与硫铁矿的关系.现代地质,5(2):164-173

胡文瑄,徐克勤.1992.论安徽庐枞盆地大鲍庄式喷气沉积-叠加改造型硫铁矿床.地质科学,(3):213-224

黄清涛,尹恭沛.1989.安徽庐江罗河铁矿.北京:地质出版社,1-193

中国科学院地球化学研究所.1987.宁芜型铁矿床形成机理.北京:科学出版社,1-152

李秉伦,谢奕汉.1984.宁芜地区宁芜型铁矿的成因、分类和成矿模式.中国科学(B辑),(1):80-86

李延河,谢桂青,段超,韩丹.2013.膏盐层在矽卡岩型铁矿成矿中的作用.地质学报,87(9):1324-1334

林刚,许德如.2010.在宁芜玢岩铁矿深部寻找大冶式铁矿的探讨——以宁芜铁矿南段为例.矿床地质,29(6):427-436

林新多,姚书振,张叔贞.1984.鄂东大冶式铁矿成矿流体性质的探讨.地球科学,27(4):99-106

刘玉山,程莱仙,缪婉萍.1981.闪长玢岩在高温、高压下与氯化物溶液作用析出铁的实验研究.地质学报,(4):276-289

宁芜项目编写组.1978.宁芜玢岩铁矿.北京:地质出版社,1-196

宋学信,陈毓川,盛继福,艾永德.1981.论火山-浅成矿浆铁矿床.地质科学,(1):41-54

苏良赫.1984.液相不共溶在岩石学及矿床学中的重要性.地球科学,(1):1-12

唐永成,吴言昌,储国正,邢凤鸣,王永敏,曹奋扬,常印佛.1998.安徽沿江地区铜金多金属矿床地质.北京:地质出版社,1-351

王文斌,李文达,范洪源,程忠富.1994.长江中下游铜矿集中区地层、岩相、古地理控制条件.火山地质与矿产,15(3):33-41

吴明安,汪青松,郑光文,蔡晓兵,杨世学,狄勤松.2011.安徽庐江泥河铁矿的发现及意义.地质学报,85(5):802-809

熊先孝,姚超美.2000.向山地区铁、硫矿床中黄铁矿矿物学研究.岩石矿物学杂志,19(2):185-192

殷友东,刘振红,盛如崇.1996.宁芜云台山硫铁矿矿床地质特征及成因类型.化工矿产地质,18(4):284-288

喻学惠.1984.常压高温下方铁矿(FeO)-氟金云母[KMg3(AlSi3O10)F2]-透辉石(CaMgSi2O6)熔融体系相平衡实验及地质意义.地球科学,(1):12-18

袁家铮.1990.梅山铁矿矿石类型及成因-高温实验结果探讨.现代地质,4(4):77-84

翟裕生,石准立,林新多,熊鹏飞,王定域,姚书振,金振民.1982.鄂东大冶式铁矿成因的若干问题.地球科学,(3):239-251

翟裕生,姚书振,林新多,周启若,万天丰,金福全,周宗桂.1992.长江中下游地区铁铜(金)成矿规律.北京:地质出版社,1-235

张招崇,侯通,李厚民,李建威,张作衡,宋谢炎.2014.岩浆-热液系统中铁的富集机制探讨.岩石学报,30(5):1189-1204

赵永鑫.1993.长江中下游地区接触带铁矿床形成矿机理.武汉:中国地质大学出版社,1-120

周涛发,范裕,袁峰,陆三明,尚世贵,Cooke DR,Meffre S,赵国春.2008.安徽庐枞(庐江-枞阳)盆地火山岩的年代学及其意义.中国科学(D辑),38(11):1342-1353

周涛发,范裕,袁峰,宋传中,张乐骏,钱存超,陆三明.2010.庐枞盆地侵入岩的时空格架及其对成矿的制约.岩石学报,26(9):2694-2714

周涛发,范裕,袁峰,张乐骏,马良,钱兵,谢杰.2011.长江中下游成矿带火山岩盆地的成岩成矿作用.地质学报,85(5):712-730

猜你喜欢
盐层矿浆火山岩
基于井控层速度插值模型的盐下气藏地震精细解释
——以川中磨溪地区雷口坡组为例
刚果(金)某氧化铜矿絮凝沉降试验研究
接财接福
内蒙古巴尔陶勒盖-复兴屯发现特大型陆相火山岩型铅锌银矿床
渤中34-9油田古近系火山岩岩相特征与分布预测
“盐层”漂浮(环球360°)
高硅低铁锌焙砂中性浸出—液固分离试验研究
三山岛金矿全尾砂静态絮凝沉降试验研究
某项目矿浆管道结构特点与长输矿浆管道安装技术
渤南洼陷沙四上亚段膏盐层特征及其石油地质意义