张洪映 贾宏昉 代晓燕
摘要 干旱、高盐、极端温度等逆境因子是限制作物产量和品质提高的重要因素。挖掘和利用逆境应答基因资源是改良其抗逆性的前提和基础,对于研究植物抗逆机制具有重要意义。蔗糖非发酵相关蛋白激酶家族2(Sucrose nonfermenting1related protein kinase 2,SnRK2)是广泛存在于植物中的一类Ser/Thr蛋白激酶,参与植物体内多种信号途径的转导,在植物的抗逆境生理过程中扮演了重要角色。为了促进小麦SnRK2基因家族的研究,该文对SnRK2基因的结构、抗逆功能、互作蛋白,以及小麦SnRK2基因家族的研究现状进行了阐述。
关键词 植物;小麦;SnRK2;抗逆性
中图分类号 S511 文献标识码 A 文章编号 0517-6611(2014)13-03805-03
Abstract Drought, salinity and low temperatures are major factors limiting tobacco productivity and quality. To survive adverse stresses, plants have developed complex signaling networks to perceive external stimuli, and then manifest adaptive responses at molecular and physiological levels. Mining and deployment of these genetic resources are the foundations for improving the drought resistance in wheat (Triticum aestivum L.). Sucrose nonfermenting1related protein kinase 2 (SnRK2) is a class of Ser/Thr protein kinase widely existing in plant and involved in a variety of signaling pathways, which play a pivotal role in plant stress physiology. To promote the study of SnRK2 kinase, the current plant and wheat SnRK2s studies, including sequence structure, function of stress resistance, and interacting proteins will be reviewed in this paper.
Key words Plant; Wheat; SnRK2; Stress resistance
蛋白质的可逆磷酸化是逆境条件下植物体内能量代谢和信号转导的重要途径,由蛋白激酶和蛋白磷酸酶和共同调控。其中,蛋白质的磷酸化是通过蛋白激酶催化完成的[1]。研究发现,许多蛋白激酶在植物新陈代谢和防御机制的信号转递中具有重要作用。其中,SNF1是一种被称为蔗糖非发酵的蛋白激酶(surcrose nonfermenting1,SNF1),最初在酵母中分离出来,响应细胞内低葡萄糖信号。现在被广泛研究的SNF1蛋白激酶超家族包括:酵母SNF1、哺乳动物AMPK(AMPactivated protein kinase,AMPK)和植物SnRK(SNF1related protein kinase)。根据结构和功能特点,可将SnRK超家族分为3个亚族:SnRK1、SnRK2和SnRK3,3个亚组的基因序列间有42%~46%的相似性,主要差异在C端调控区。其中,SnRK1与SNF1/AMPK序列相似度高,具有直接的功能同源性,SnRK2和SnRK3则不同于SnRKl家族,它们是植物特有的基因家族[2-4]。近年来研究发现,SnRK2广泛参与了植物的非生物胁迫应答[5-7]。
小麦是重要的粮食作物,基因组庞大、序列复杂、基因转化困难等原因,使小麦的结构基因组、功能基因组和蛋白质组研究远落后于水稻、玉米等作物。小麦SnRK2蛋白激酶的功能及抗逆机理研究未形成完整体系。因此,笔者对小麦SnRK2激酶的研究进行综述,以期为促进小麦抗逆基因资源的研究和利用。
1 SnRK2的序列结构
SnRK2是一个相对较小的植物专一性蛋白激酶家族,在拟南芥、水稻和玉米等的研究发现其成员约为10个,具有典型的N端和C端功能结构域,N端催化域高度保守,C端为调控区[5-7]。与SnRK1相比,SnRK2的C端缺少140~160个氨基酸,相对较短,该C端的显著特征是具有一个富含谷氨酸或天冬氨酸(D/E)的酸性补丁结构。据此可将SnRK2分为SnRK2a(Subclass I和Subclass II)亚族和SnRK2b(Subclass III)亚族。其中SnRK2a的C端富含天冬氨酸,而SnRK2b中富含谷氨酸。研究发现,SnRK2的C端结构域和酶的激活、ABA信号传递及蛋白间的相互作用相关[8-9]。
2 小麦SnRK2基因的研究
植物应答逆境胁迫的过程非常复杂,涉及多种信号传递通路。根据是否有ABA(脱落酸)的参与,将胁迫应答分为ABA依赖途径和非ABA依赖途径。越来越多的研究表明,SnRK2家族成员以不同的调控方式广泛参与植物的逆境胁迫信号传递,在植物的逆境应答中具有重要作用。
在植物中分离到的第1个SnRK2成员(PKABA1)来自经ABA处理的小麦胚胎cDNA文库,研究发现PKABA1可以与ABA 反应元件结合因子ABF结合从而调节植物体内的脱落酸(abscisic acid,ABA);受ABA、冷和渗透胁迫诱导表达[10]。研究者随后对PKABA1高度同源基因TaPK3(相似性为97%)的研究发现,TaPK3基因在小麦新生幼芽中富集,不受非生物胁迫诱导表达。可见,SnRK2基因的功能并不局限在植物的胁迫抗性方面[11]。通过扫描干旱胁迫小麦幼苗的cDNA文库,2个高度同源的SnRK2基因W55a和W55c(相似性为98.54%)被克隆,其属于Subclass II亚族成员;位于小麦2BS染色体上;可以被干旱、高盐、ABA和水杨酸等激活,但不受冷胁迫诱导[12]。从小麦根部cDNA差减文库中分离到1个新的SnRK2基因TaSRK2C1;基因表达分析研究发现,其受干旱、高盐、低温和外源ABA诱导表达,在植物中过表达TaSRK2C1基因能显著增强植株的抗逆能力[13]。小麦TaSnRK2.9基因的克隆与生物信息学分析发现,其与水稻SAPK9基因直系同源,同属于Subclass II亚族;在小麦的根、茎、叶和花等器官均都有表达,且在叶片的表达量最高;目前还没有对其功能的系统报道[14]。
笔者对小麦TaSnRK2.3、TaSnRK2.4、TaSnRK2.7和TaSnRK2.8的抗逆性研究发现,4个基因在植物的各组织均有表达,其中,TaSnRK2.3和TaSnRK2.4在新生组织中表达较高,而TaSnRK2.7和TaSnRK2.8在根部表达最高;TaSnRK2.7不能被ABA激活,而其他基因受ABA诱导表达;4个基因同时受干旱、冷和高盐胁迫诱导;转基因后均能显著增强植物的非生物胁迫抗性[15-18]。通过对TaSnRK2.7基因组序列进行直接测序,研究其单核苷酸多态性(Single nucleotide polymorphisms,SNP)发现,一些SNP位点与抗逆相关;利用SNP将TaSnRK2.7精细定位于小麦2AL染色体WMC179.4 和WMC401标记之间,与磷素和可溶性糖高效积累的QTLs定位相近[19-20]。对TaSnRK2.8的SNP研究发现了一个与SNP与苗期生物量和可溶性糖显著关联的SNP [21]。这些研究结果显示,SnRK2可能与其直系同源基因酵母SNF1相似,具有调节糖代谢功能。
3 SnRK2基因参与植物体内的糖代谢途径
糖不仅能够为植物的生长发育提供能量和代谢中间产物,同时还具有信号传递功能,调节逆境相关基因的表达。然而,由于糖信号转导与植物体内的生长代谢过程及激素等信号转导途径等形成复杂的网络联系,其确切机制尚未清楚[22-24]。与SnRK2基因的SNP分析一致,转基因功能研究发现,拟南芥AtSnRK2.6基因[25]和小麦TaSnRK2.8基因[18]在植物中过表达后,能显著增加可溶性糖含量、降低细胞渗透势从而增强植物的抗逆能力。可见,SnRK2基因同时参与了植物体内的糖代谢和逆境信号传递过程,关于其确切的分子调控机制尚待研究。
4 SnRK2参与逆境应答的一种调控机制
对SnRK2的上游激活因子和特异性底物的研究可以深入了解其功能。从目前的研究结果看,SnRK2可以被ABA及渗透胁迫等逆境因子激活,其活性调控是以自身磷酸化为基础,但其调控机制并不清楚。早期对SnRK2上游活化因子的研究发现蛋白磷酸酶2C(PP2C)对OSTI/SnRK2.6基因起负调控作用[26]。前人在检测SnRK2酶活及寻找靶蛋白的过程中发现其底物主要是碱性亮氨酸拉链类(Basic leucine zipper,bZIP)转录因子。例如在小麦、水稻和拟南芥里发现ABA下游应答转录因子ABF/AREB(ABA responsive transcription factots)可能是SnRK2家族基因的磷酸化底物[27-28]。美国和德国的2个实验室分别报道了通过体外试验研究ABA信号传递途径的发现[29-31]:PYR/PYL/RCAR家族是ABA的受体,其与ABI1和ABI2等蛋白磷酸酶(PP2Cs)、SnRK2蛋白激酶共同调控ABA依赖型基因的表达。当植物体内缺乏ABA时,PP2C可以抑制SnRK2的自我磷酸化;在ABA存在条件下,ABA与受体PYR/PYL/RCAR形成的复合体可以捕获PP2C,此时的SnRK2可以自我磷酸化,激活下游转录因子ABF,开启ABA应答元件ABRE的转录,进而调控下游ABA依赖型基因的表达。植物体内的研究发现,拟南芥中受ABA诱导的SnRK2家族Subclass III亚族成员的信号传递途径符合ABAPYRPP2CSnRK转录因子相偶联的ABA信号通路[32-34]。
5 小结与展望
综上所述,小麦SnRK2成员具有组织表达差异,以不同的调控方式广泛参与了植物的逆境胁迫应答反应。根据前人的研究,SnRK2成员有其独特的逆境信号传递功能,一些成员并不受ABA的诱导激活。据此,Shukla和Mattoo根据前人的研究结果提出,SnRK2的信号转导途径可能包括2个过程:首先,逆境胁迫信号引发植物内源ABA的释放,进而激活SnRK2,活化后的SnRK2可以进一步磷酸化下游AREB,最终引发一系列基因的表达。另一条信号传递过程则不依赖于内源ABA的释放,SnRK2可以直接作用于相关基因,引发逆境胁迫下一系列基因的应答反应[35]。因此,下一步的研究主要应该集中在SnRK2基因的非ABA依赖信号传递途径方面。
参考文献
[1] KNIGHT H.Calcium signaling during abiotic stress in plants[J].International Review of Cytology,2000,195:269-325.
[2] HALFORD N G,HARDIE D G.SNF1related protein kinases:global regulators of carbon metabolism in plants[J].Plant Mol Biol,1998,37:735-748.
[3] HALFORD N G,HEY S J.Snf1related protein kinases(SnRKs)act within an intricate network that links metabolic and stress signalling in plants[J].Biochem J,2009,419:247-259.
[4] ZHANG H Y,MAO X G,JING R L.SnRK2 acts within an intricate network that links sucrose metabolic and stress signaling in wheat[J].Plant Signaling & Behavior,2011,6:652-654.
[5] KOBAYASHI Y,MURATA M,MINAMI H,et al.Abscisic acidactivated SNRK2 protein kinases function in the generegulation pathway of ABA signal transduction by phosphorylating ABA response elementbinding factors[J].Plant J,2005,44:939-949.
[6] KOBAYASHI Y,YAMAMOTO S,MINAMI H, et al.Differential activation of the rice sucrose nonfermenting1related protein kinase2 family by hyperosmotic stress and abscisic acid[J].Plant Cell,2004,16:1163-1177.
[7] HUAI J,WANG M,HE J,ZHENG J,et al.Cloning and characterization of the SnRK2 gene family from Zea mays[J].Plant Cell Rep,2008,27:1861-1868.
[8] HUANG J F,TEYTON L,HARPER J F.Activation of a Ca(2+)dependent protein kinase involves intramolecular binding of a calmodulinlike regulatory domain[J].Biochemistry,1996,35:13222-13230.
[9] VLAD F,RUBIO S,RODRIGUES A,et al.Protein phosphatases 2C regulate the activation of the Snf1related kinase OST1 by abscisic acid in Arabidopsis[J].Plant Cell,2009,21:3170-3184.
[10] HOLAPPA L D,WALKERSIMMONS M K.The wheat abscisic acidresponsive protein kinase mRNA PKABA1,is upregulated by dehydration,cold temperature,and osmotic stress[J].Plant Physiol,1995,108:1203-1210.
[11] HOLAPPA L D,WALKERSIMMONS M K.The wheat protein kinase gene,TaPK3,of the PKABA1 subfamily is differentially regulated in greening wheat seedlings[J].Plant Molecular Biology,1997,33:935-941.
[12] XU Z S,LIU L,NI Z Y,et al.W55a encodes a novel protein kinase that is involved in multiple stress responses[J].Journal of Integrative Plant Biology,2009,51:58-66.
[13] DU X M,ZHAO X L,LI X J,et al.Overexpression of TaSRK2C1,a wheat SNF1related protein kinase 2 gene,increases tolerance to dehydration,salt,and low temperature in transgenic tobacco[J].Plant Mol Biol Rep,2013,31:810-821.
[14] 连魏卫,唐益苗,高世庆,等.小麦TaSnRK2.9蛋白激酶基因克隆与生物信息学分析[J].中国农学通报,2011,27(33):6-12.
[15] TIAN S J,MAO X G,ZHANG H Y,et al.Cloning and characterization of TaSnRK2.3,a novel SnRK2 gene in common wheat[J].Journal of Experimental Botany,2013,64:2063-2080.
[16] MAO X G,ZHANG H Y,TIAN S J,et al.TaSnRK2.4,a SNF1type serine/threonine protein kinase of wheat(Triticum aestivum L.),confers enhanced multistress tolerance in Arabidopsis[J].J Exp Bot,2010,61:683-696.
[17] ZHANG H Y,MAO X G,JING R L,et al.Characterization of a common wheat(Triticum aestivum L.)TaSnRK2.7 gene involved in abiotic stress responses[J].J Exp Bot,2011,62:975-988.
[18] ZHANG H Y,MAO X G,WANG C S,et al.Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought,salt and low temperature in Arabidopsis[J].PLoS ONE,2010,5:16041.
[19] ZHANG H Y,MAO X G,ZHANG J N,et al.Genetic diversity analysis of the drought resistance gene TaSnRK2.7A in common wheat[J].Genetica,2011,139:743-753.
[20] ZHANG H Y,MAO X G,WU X S,et al.An abiotic stress response gene TaSnRK2.7B in wheat accessions:genetic diversity analysis and gene mapping based on SNPs[J].Gene,2011,478:28-34.
[21] ZHANG H Y,MAO X G,ZHANG J N,et al.Single nucleotide polymorphisms and association analysis of drought resistance gene TaSnRK2.8 in common wheat[J].Plant Physiology and Biochemistry,2013,70:174-181.
[22] HO S L,CHAO Y C,TONG W F,et al.Sugar coordinately and differentially regulates growthand stressrelated gene expression via a complex signal transduction network and multiple control mechanisms[J].Plant Physiol,2001,125:877.
[23] SMEEKENS S.Sugarinduced signal transduction in plants[J].Plant Biol,2000,51:49-81.
[24] ROOK F,CORKE F,CARD R.Impaired sucroseinduction mutants reveal the modulation of sugarinduced starch biosynthetic gene expression by abscisic acid signalling[J].Plant J,2001,26:4210-4233.
[25] ZHENG Z F,XU X P,CROSLEY R A,et al.The protein kinase SnRK2.6 mediates the regulation of sucrose metabolism and plant growth in Arabidopsis[J].Plant Physiol,2010,153:99-113.
[26] LEUNG J,MERLOT S,GIRAUDAT J.The Arabidopsis abscisic acidinsensitive 2 (ABI2)and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction[J].Plant Cell,1997,9:759-771.
[27] KAGAYA Y,HOBO T,MURATA M,et al.Abscisic acid·induced transcription is mediated by phosphorylation of an abscisic acid response element binding factor,TRABI[J].Plant Cell,2002,14:3177-3189.
[28] FURIHATA T,MARUYAMA K,FUJITA Y,et al.Abscisic aciddependent multisite phosphorylation regulates the activity of a transcription activator AREBI[J].Proc Natl Acad Sci USA,2006,103:1988-1993.
[29] MELCHER K,NG L M,ZHOU X E,et al.A gatelatchlock mechanism for hormone signaling by abscisic acid receptor[J].Nature,2009,462:602-608.
[30] FUJII H,CHINNUSAMY V,RODRIGUES A,et al.In vitro reconstitution of an abscisic acid signalling pathway[J].Nature,2009,462:660-664.
[31] SOON F F,NG L M,ZHOU X E,et al.Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases[J].Science,2012,335:85-88.
[32] FUJITA Y,NAKASHIMA K,YOSHIDA T,et al.Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis[J].Plant Cell Physiol,2009,50:2123-2132.
[33] UMEZAWA T,SUGIYAMA N,MIZOGUCHI M,et al.Type 2C protein phosphatases directly regulate abscisic acidactivated protein kinases in Arabidopsis[J].Proc Natl Acad Sci USA,2009,106:17588-17593.
[34] VLAD F,RUBIO S,RODRIGUES A,et al.Protein phosphatases 2C regulate the activation of the Snf1related kinase OST1 by abscisic acid in Arabidopsis[J].Plant Cell,2009,21:3170-3184.
[35] SHUKLA V,MATTOO A K.Sucrose nonfermenting 1 related protein kinasc 2(SnRK2):a family of protein kinases involved in hyperosmotic stress signaling[J].Physiol Mol Biol Plants,2008,14:91-100.