徐艳宇 韩晓明
一、学生解决问题的意识逐渐淡薄的原因分析
传统课堂教学主要是靠“灌输——接受”的模式来完成。忽视了学生发现问题和解决问题的能力的培養,学生普遍不能或不善于发现问题,不敢或不愿意解决问题。严谨的教学结构、高密度的练习设计、一环紧扣一环的教学环节,教师追求的这种高密度、快节奏,势必会使学生始终处于被动状态,没有独立思考的时间和空间。渐渐地,一些学生失去了提问题的习惯。
现在有的教师改变“满堂灌”为“满堂问”,课堂上虽然也有一些火热的场面,看似学生不断思考,其实是通过问答的形式,老师在牵着学生走。火热的场面实质上反映的是教师自己的思维过程,不是学生主动学习的过程。这也就是为什么许多学生听听就懂一做就错的原因所在。在整齐划一的答案面前,学习没有了悬念,学生没有了疑问。教师的过度“指导”,实际上变成了对学生的主宰,压制了学生学习的积极性和主动性。而学生的质疑能力得不到培养,也就发现不了有价值的问题了。
二、培养学生自主解决问题的能力
数学中的解决问题包括两种情况:一是解决数学学科问题,二是运用数学知识解决现实生活或其他学科中的实际问题。由于每一个学生都有各自不同的知识体验和生活积累,在解决问题的过程中每一个人都会有自己对问题的理解,并在此基础上形成自己解决问题的策略。教师应鼓励学生从不同的角度、不同的途径来思考和解决问题,让学生寻求自己对知识和方法的理解,以促进学生解决问题能力的提高和发展。
(一)精心预设问题情景 ,激发学习热情
创设“问题情景”就是在教材内容和学生求知心理之间制造一种“不协调”,把学生引入一种与问题有关的情景的过程。这个过程也就是“不协调-探究-深思-发现-解决问题”的过程。“不协调”必然要质疑,把需要解决的问题,有意识地、巧妙地寓于各种各样符合学生实际的教学情景之中,在他们的心理上造成一种悬念,从而使学生的注意、记忆、思维凝聚在一起,以达到智力活动的最佳状态。
(二)提供足够的问题解决活动时空
学生的学习是一个积极主动的认识活动过程,只有经过学生自己主动参与、探索、发现,新知识才能纳入学生已有的知识结构中,从而形成新的认知结构。因此,当学生已积极投入问题解决活动中时,教师一定要给学生创造足够的思考时间和探索的空间。只有给学生提供寻找问题解决的策略、途径,才能使学生在自主探索的过程中真正理解数学问题的由来,数学概念的形成,数学结论的获得,数学知识的应用以及数学活动经验的积累。只有这样,才能使学生真正理解和掌握基本的数学知识、思想和方法,获得广泛的数学活动经验以及良好的数学情感体验。
(三)引导学生用合作交流的方式解决问题
在数学活动中,学生是活动的主体。因此,教师在教学中要面向全体,给学生提供自主探索的机会,引导学生去动手实践、自主探索,在观察、实验、猜测、验证等数学活动中解决问题,并初步发展学生解决问题的策略。同时,还应注重学生在学习中的合作与交流,《数学课程标准》所说:教学中,“教师要让学生在具体的操作活动中进行独立思考,鼓励学生发表自己的意见,并与同伴进行交流。”如三角形按边的特征可以分几类?可以借助学生手中的尺。跟据测量结果,探索规律,教学中,首先应该学生思考,从图形中你能发现什么?让学生经历观察(每条边的长短)、比较(不同三角形的异同)、归纳(可能具有的规律)、提出猜想的过程。教学中,不要仅注意学生是否找到规律,更应注意学生是否进行思考。如果学生一时未能独立发现其中的规律,教师就鼓励学生相互合作交流,通过交流的方式发现问题、解决问题,不仅将“游离”状态的数学知识点凝结成优化的数学知识结构,而且将模糊、杂乱的数学思想清晰和条理化,有利于思维的发展,有利于在和谐的气氛中共同探索,学生解决问题的能力得以提高。
(四)引导主动探究,促进全面参与
爱因斯坦认为:“提出一个问题往往比解决一个问题更重要。因为解决问题也许仅仅是一个数学上或实验上的技能而已,而提出新的问题、新的可能性,从新的角度去看待旧问题,却需要有创造性的想象力,它标志着科学的真正进步。”在知识的来龙去脉上找。
(五)关注解决实际问题
能有效地解决日常生活中的问题,是学生学习数学的首要目标。解决问题活动的价值不只是获得具体问题的解,更重要的是学生在解决问题过程中获得的发展。其中重要的一点在于使学生学习一些解决问题的基本策略,体验解决策略的多样化,并在此基础上形成自己解决问题的某些策略。学生所采用的策略,在教师的眼中有优劣之分,但在学生的思考过程中并没有好坏之别,都反映出学生对问题的理解和所作出的努力。
(六)引导反思评价,优化解决策略
“解决问题”教学的目的不仅仅是解决一个或几个问题的本身,而应该是让学生通过课堂上的几个问题解决过程的经历、探索与体验来学会解决问题的一些常用的基本策略和方法,并且获得情感上的体验。掌握数学思想方法才是数学教学的策略,才能适应问题的千变万化。而组织学生对解决问题过程与方法的反思评价是形成数学思想和策略非常关键的一步,也是过去教学未能重视的一环。在探求过程中,往往会出现许多不同的方法和结果,教师要给予学生充分的自由,允许他们发表意见,保护学生的积极性。问题解决后,教师还要善于引导学生比较多种答案,找出最好的解决方案。教学中我要求学生学会分析自己解题途径是否最简捷,推理是否严谨。
(七)重视开放题,激发学生的创造潜能
数学作为一门思维性极强的基础学科,在培养学生的创造性的解决问题的能力方面有其得天独厚的条件。数学开放题与那些具有唯一正确答案,甚至唯一正确解法的“传统问题”相比,由于自身的开放性质,不再是条件充分、结论唯一,决定了学生不可能按照既定的模式机械的去从事解题活动,而必须主动地、积极地去进行探索,激发了学生的创造潜能。所以,在教学中教师要用动态的眼光,用活现行教材,使教学内容更加现实、有意义、富有挑战性。
在教学中,通过多角度思考,获得多种解题途径,甚至产生不同的解题结果,可拓宽学生的思路,使学生感受到数学的奥秘和情趣,从而进一步培养学生创造性地解决问题的能力。
(八)引导学生实践运用,强化应用意识
学习数学的目的之一就是运用所学的知识解决日常生活中的实际问题,使学生在问题解决的过程充分认识生活离不开数学,从而产生对数学学习的需要。生活中的数学问题很多,在教学中引导学生把生活中的问题抽象为数学问题,这样既可以加深学生对所学知识的理解,又有助于提高解决问题的能力。如房屋装修粉刷面积,铺地用多少块砖,种植面积与棵数,车轮为什么制成圆形等。凡是有助于学生用数学知识解决实际问题的机会,都要让学生去实践、去探索,使学生觉得身边处处有数学,懂得知识来源于日常生活,并能运用所学的数学知识和方法解决一些简单的实际问题。