路增龙 宋会侠 杜利林 任留东 耿元生 杨崇辉
LU ZengLong,SONG HuiXia,DU LiLin,REN LiuDong,GENG YuanSheng and YANG ChongHui**
中国地质科学院地质研究所,北京 100037
Institute of Geology,Chinese Academy of Geological Sciences,Beijing 100037,China
2013-11-29 收稿,2014-02-21 改回.
TTG 作为早期地壳增生的主要物质,在世界各个古老的克拉通均有广泛分布。Condie et al. (2009)统计结果显示地球的岩浆活动在晚太古宙出现两个峰期:2.7Ga 和2.5Ga。其中2.7Ga 岩浆活动是全球性事件,而2.5Ga 的岩浆活动相对较弱,在全球范围内只有西澳的Pilbara 北部、印度Dharwar、西南格陵兰以及南极、中国华北、非洲的中部和东部等少数几个克拉通的局部范围内有这期岩浆事件的记录(Jayananda et al.,2000;沈其韩等,2005;Condie et al.,2009;刘富,2010;Wan et al.,2012;杨崇辉等,2011;Yang et al.,2013)。在全球范围内~2.7Ga 的岩浆活动非常强烈,而从华北克拉通目前的研究来看,情况恰好相反。华北克拉通虽然有大量的~2.7Ga 的残留锆石或碎屑锆石年龄以及Hf 模式年龄记录(沈其韩等,2005;Geng et al.,2012),但出露的地质体并不多见。仅在鲁西(Cao,1996;庄育勋等,1997;Jahn et al.,1988;杜利林等,2003,2010;陆松年等,2008;王伟等,2009;Wan et al.,2012)、胶东栖霞(Tang et al.,2007;Jahn et al.,2008;Liu et al.,2011)、皖北霍邱(Wan et al.,2010)、武川西乌兰不浪(董晓杰等,2012;马铭株等,2013)、中条(Zhu et al.,2013)、恒山(Kröner et al.,2005;Faure et al.,2007)、阜平(Guan et al.,2002;Han et al.,2012)和赞皇(Yang et al.,2013)等局部地区发现了一些~2.7Ga 的地质体,在豫西鲁山地区发现有时代稍早一点的2.75 ~2.8Ga 的岩浆活动记录(Kröner et al.,
1988;Sun et al.,1994;Liu et al.,2009;Diwu et al.,2010),而除此之外遍及华北克拉通的太古宙TTG 基本形成于2.5 ~2.6Ga(耿元生等,2010;Yang et al.,2013)。
阜平杂岩中的TTG 分布非常广泛。现在所发现的大规模出露的是~2.5Ga 的TTG,因此大多认为阜平TTG 片麻岩主要形成于~2.5Ga,代表了阜平地区地壳增生的主要阶段。近年来,随着地质调查研究工作的深入和SHRIMP 等原位定年技术的广泛应用,逐步发现了一些~2.7Ga 的年龄记录。程裕淇等(2004)发现在长英质麻粒岩中发育有~2.7Ga 岩浆型的碎屑锆石;在龙泉关~2.5Ga 的花岗片麻岩中有~2.7Ga 的残留锆石或残留锆石的核(Wilde et al.,1997,2005);Guan et al. (2002)报道在阜平叠卜安黑云母正片麻岩中存在2708 ±8Ma 的角闪片麻岩包体;Han et al. (2012)在阜平南部眼药沟附近发现条带状英云闪长质片麻岩中存在2.75Ga、2.65Ga 和2.51Ga 三组年龄。认为2.75Ga 是该样品的形成年龄,2.65Ga 是其晚期岩浆脉动的产物,而~2.5Ga 则是另一期TTG 岩浆活动。但该样品所代表地质体的详细产状及分布范围并不清楚。笔者在阜平东南部发现了具有一定分布范围的~2.7Ga TTG 片麻岩。这一发现对于划定阜平杂岩及华北克拉通的~2.7Ga TTG 的分布、探讨华北克拉通的基底划分及地壳增生过程及构造演化历史具有非常重要的意义。
阜平杂岩位于太行山的中段,属于Zhao et al. (2005)所划分的华北克拉通中部带的中段,主要由早前寒武纪变质岩和少量中生代花岗岩组成,是了解华北克拉通形成与演化的关键部位。阜平杂岩早前寒武纪主要岩石类型为:经历高角闪岩相-麻粒岩相变质的新太古代TTG 片麻岩、变质表壳岩;以副片麻岩为主的古元古代湾子岩系和古元古代的南营正片麻岩以及变质基性岩脉等(图1)(Guan et al.,2002;程裕淇等,2004;Liu et al.,2005;任留东等,2011)。
前人对阜平杂岩的研究始于20 世纪60 年代。1960 年代初期河北区调队、山西区调队在太行山地区进行了1/20万阜平幅、石家庄幅、盂县幅、平型关幅等区域地质调查工作,将太行山中北段早前寒武纪变质岩系建立了著名的阜平群、龙泉关群、五台群、滹沱群,将该区早前寒武纪划分为三个大的演化阶段——阜平期、五台期、吕梁期,建立了区域构造格架(程裕淇等,2004)。马杏垣等(1963)认为阜平杂岩近似一个片麻岩穹窿,张寿广等(1983)认为太古宙阜平群岩系构成了穹状复合褶皱群,并先后经历了水平构造和垂直构造体制的转换。张寿广等(1983)、耿元生等(1986)、伍家善等(1989)分别对区内的岩石、构造、地球化学等方面进行过研究(王凯怡等,1991)。
近年来一些学者将阜平杂岩的不同岩石类型分为三个地质单元(刘树文,1996;刘树文和梁海华,1997;Liu,1997;Liu et al.,2002a,b,2005)。第一个单元是阜平片麻杂岩,出露于山麓带,主体岩性为太古宙TTG 片麻岩(王凯怡等,1991)。第二个单元为分布于山峰带的古元古代花岗质岩石,即南营正片麻。第三个单元为分布于西部和东南部的古元古代湾子岩系,主要岩性为富铝的变质表壳岩。Zhao et al. (2000)、Kröner et al.(2005)将分布于阜平西南部的龙泉关眼球状花岗质片麻岩,即以前的龙泉关群(伍家善等,1989)单独分离出来划分为第四个单元。
前人对阜平地区不同地点的新太古代TTG 片麻岩进行了年代学研究,年龄结果主要集中于~2.5Ga,变质年龄为~1.8Ga(程裕淇等,2004;Zhao et al.,2002)。变质表壳岩主要为阜平岩群的索家庄岩组和元坊岩组,二者大体形成于~2.54Ga,并且都经历了两期变质作用的叠加,一次为~2.5Ga 的高角闪岩相-麻粒岩相变质,一次为~1.8Ga 的角闪岩相变质(程裕淇等,2004)。此外,程裕淇等(2004)对阜平大柳树变质基性岩脉和康家峪变质基性岩脉中的变质锆石分别做了SHRIMP 年龄,显示二者变质及深熔年龄基本一致,为~1.82Ga。
本文研究的条带状片麻岩主要分布于阜平县东南部的边界口村与魏家峪村一带。在《太行山中北段早前寒武纪地质图》(程裕淇等,2004)中划归坊里片麻岩,具体位于东城铺-鲁家沟坊里片麻岩体的北部边界(图1)。我们通过根据岩性等特征向不同方向进行了追索,初步圈定了岩体的范围。
该片麻岩新鲜面灰色,风化后呈灰白色,片麻状、条带状构造,中粒花岗变晶结构,其片麻理产状为115°∠15°。主要矿物组合为斜长石、石英、黑云母和角闪石,含少量磁铁矿及绿帘石等。采样点坐标为N38°43.336',E114°24.003'及其附近。该片麻岩可分为岩石主体和条带,条带共有三种:1)细小的暗色条带;2)与暗色条带相间分布、且平行于片麻理的深熔浅色条带;3)局部穿切片麻理后期注入的长英质脉体。其中暗色条带较少,主要由黑云母和少量角闪石组成,与平行于片麻理的浅色条带紧密共生(图2)。
根据岩性的变化我们采取了几个较为典型的岩石样品进行了研究,F177-1、F177-2、F177-5、F177-6 均采自条带不发育的片麻岩主体部分,岩性类似,更多地保留了原岩的特点;F177-3、F177-4 为暗色矿物较多的石英闪长质片麻岩,采自颜色较暗的岩石主体部分。样品中均不包含或只包含很少的条带。
图2 阜平地区条带状片麻岩野外露头特征(a)-片麻岩露头总体特征;(b)-片麻岩条带特征;(c)-测年样品F177-1 野外特征Fig. 2 The outcrop features of the banded gneisses in Fuping area
图3 F177-1 与F177-3 显微照片Fig.3 Photomicrographs of sample F177-1 and F177-3
黑云斜长片麻岩(F177-1 样品)(图3a),中粒粒柱状结构,片麻状构造,黑云母定向不连续排列,构成片麻理。矿物组成为:斜长石63%,半自形板柱状结构,聚片双晶发育,部分蚀变为绢云母或白云母;石英20%,他形粒状结构,可见钠长石围绕的环边结构;钾长石3%,他形粒状结构,个别见波状消光;微斜长石2%,他形粒状结构,格子状双晶发育;黑云母8%,半自形片状结构,见有绿泥石化蚀变,多色性为黄绿色-墨绿色;角闪石3%,半自形柱状结构,多色性为黄绿色-深绿色。副矿物有磁铁矿、磷灰石、锆石、褐帘石等。F177-2、F177-5、F177-6 等其它样品与F177-1 样品基本相同。
角闪斜长片麻岩(F177-3、F177-4 样品)(图3b),中粒粒柱状结构,片麻状构造,主要矿物组成为斜长石45%,半自形或他形板柱状结构,聚片双晶发育,表面不光洁,有绢云母化;角闪石40%,半自形柱状结构,两组解理发育;石英10%,他形粒状,表面光洁,可见波状消光;钾长石2%,他形粒状,有绢云母化;黑云母3%,半自形片状结构,多色性为棕黄色-褐色。副矿物为磁铁矿、磷灰石、锆石等。
全岩主量、微量和稀土元素含量由北京国家地质测试分析中心测试,其中全岩主量元素用X 荧光光谱仪(XRF)分析,所用仪器为日本理光3080E,误差<0.5%;微量元素和稀土元素采用等离子质谱仪分析,误差<5%。
测年样品锆石的分选由河北省区域地质矿产调查研究所完成。锆石阴极发光显微照相由北京离子探针中心的扫描电镜室完成,工作电压为15kV,电流为4nA。
锆石测年在天津地质矿产研究所同位素实验室利用激光烧蚀多接收器等离子质谱仪(LA-MC-ICPMS)进行微区原位U-Pb 同位素测定。分析仪器为Thermo Fisher 公司制造的Neptune 多接收器等离子质谱仪,与等离子体质谱仪配套的进样设备激光器为美国ESI 公司生产的UP193-FX ArF 准分子激光器,激光波长193nm,脉冲宽度5ns,本次测试所用束斑为35μm。根据锆石阴极荧光照片、显微镜下反射光和透射光照片选择锆石的合适的年龄晶域,利用193nm 激光器对锆石进行剥蚀。采用TEMORA 和GJ-1 作为外部锆石年龄标准进行U、Pb 同位素分流校正(Black et al.,2003;Jackson et al.,2004)。采用ICP-MS DataCal 程序(Liu et al.,2009)和Ludwig 的Isoplot 程序(Ludwig,2003)进行数据处理,采用208Pb 校正法对普通铅进行校正(Andersen,2002)。利用NIST612 玻璃标样作为外标计算锆石样品的Pb、U、Th 含量。LA-MC-ICPMS 年龄测定试验条件和关键参数:接收器设置——L4,206Pb;L3,207Pb;L2,208Pb;C,219.26;H2,232Th;H4,238U。冷却气体16L·min-1,辅助气体0.75L·min-1,Ar载气0.968L·min-1,He 载气0.86L·min-1。RF 功率1251W,积分时间0.131s,样品信号采集时间60s(其中20s为空白的测定)(李怀坤等,2010)。
本次进行年龄测定的岩石样品为F177-1。锆石多呈透明-半透明状,金刚光泽,半自形柱状,晶棱圆钝。锆石表面溶蚀凹坑较多,裂纹非常发育,应为重熔作用所致。锆石粒径以150 ~350μm 为主,少量在350μm 以上。锆石的伸长系数为2 ~5 之间。
在阴极发光(CL)图像中,锆石颗粒长柱状和短柱状晶体均有,具有密集振荡环带,个别具有很窄的浅色变质增生边(图4)。从锆石的表面形态及内部结构特征看,该样品锆石具有典型岩浆成因的特征。一些锆石局部环带较模糊,受到了一定程度重结晶的影响。
我们选择了32 颗锆石进行了U-Pb 同位素测定(表1)。锆石微区U 含量变化于90 ×10-6~325 ×10-6之间,Th/U 比值在0.4 ~1.2 之间,平均约为0.6,显示出岩浆成因锆石的特征。多数分析结果位于谐和线上及其附近,部分测点存在一定程度的Pb 丢失,不一致线上交点年龄为2674 ±20Ma(图5a)。从年龄数据可以看出,12 颗锆石存在Pb 丢失,导致年龄偏离协和线,一颗锆石具有2501Ma 的谐和年龄,其Th/U 比值为0.17,明显低于~2.7Ga 年龄组锆石的Th/U 比值,该锆石为自形柱状,具有震荡环带,但测点位置振荡环带变模糊,推测有可能受到了后期事件的强烈改造。在谐和线上的19 颗锆石207Pb/206Pb 年龄加权平均值为2669.2 ±9.7Ma(图5b),与不一致线上交点年龄2674 ±20Ma 在误差范围内一致。因此2670Ma 应代表片麻岩的原岩结晶年龄。2501Ma 的锆石由于只有一颗,初步推断可能是受2500Ma 左右岩浆事件影响的产物。
表1 锆石LA-ICP-MS U-Pb 测年数据表Table 1 The LA-IPC-MS zircon U-Pb isotopic data
图4 阜平地区条带状片麻岩锆石阴极发光图像和207Pb/206Pb 年龄Fig.4 CL images and 207Pb/206 Pb ages of zircon from the banded gniesses in Fuping area
对所采6 个岩石样品进行了主量元素以及稀土和微量元素的测定,详细结果及参数见表2。
表2 片麻岩的主量(wt%)、微量元素和稀土元素(×10 -6)分析结果Table 2 Major (wt%),trace and rare earth element (×10 -6)compositions of gneisses
图5 阜平地区条带状片麻岩锆石U-Pb 年龄谐和图Fig.5 U-Pb concordia of zircons from the banded gneisses in Fuping area
该阜平条带状英云闪长质片麻岩具有高铝(Al2O3=14.00% ~15.87%)、富钠(Na2O =3.85% ~4.22%)、贫钾(K2O=1.13% ~2.42%)低K/Na 比值的岩石化学特征(表2)。其MgO 的含量较低为1.02% ~3.37%,TiO2和P2O5含量均很低,分别为0.23% ~0.55%和0.04% ~0.22%。在标准化的An-Ab-Or 图解上,5 个样品落入英云闪长岩区,1 个样品落入花岗闪长岩区(图6)。加之显微镜下观察,从矿物组成及含量看6 个样品均为英云闪长质。样品的Mg#与太古宙TTG 平均值43 相近(Martin,1994),为39.5 ~49.6,F177-1、F177-2、F177-5、F177-6 样品平均值为41.3。
其中样品F177-3 与F177-4 具有相对较低的硅含量(SiO2= 64.32% ~64.64%),铁、镁、钙的含量相对较高(Fe2O3=6.37% ~6.79%(全铁),MgO =2.65% ~3.37%,CaO=5.05% ~5.67%),Mg#也是6 个样品中最高的(分别为49.6 和45.2)。
图6 阜平地区条带状片麻岩An-Ab-Or 图解(据Barker,1979)Tn-tonalite(英云闪长岩);Gd-granodiorite(花岗闪长岩);MGmonzonitic granite(二长花岗岩);Tdh-trondhjemite(奥长花岗岩);Gr-granite(花岗岩)Fig.6 An-Ab-Or diagram of the banded gneisses in Fuping area (after Barker,1979)
该片麻岩稀土元素含量变化较大,ΣREE =55.91 ×10-6~120.2 ×10-6,轻重稀土中等-强烈分馏[(La/Yb)N=3.67~51.38],在稀土配分模式图上表现为较陡的右倾曲线(图7),与>2.5Ga 的TTG 稀土配分曲线(Martin,1994)相类似。Eu 异常不明显,Yb 异常不明显。稀土配分曲线分明显分为两组:一是陡倾的右倾曲线,具有弱的Eu 正异常;二是相对较为平缓的右倾曲线,具有弱的Eu 负异常。两者稀土含量和配分曲线差别很明显。
图7 阜平地区条带状片麻岩稀土球粒陨石标准化配分图解(标准化值据Boynton,1984)Fig.7 Chondrite REE patterns of the banded gneisses in Fuping area (normalization values after Boynton,1984)
图8 阜平地区条带状片麻岩微量元素原始地幔标准化蛛网图(标准化值据Taylor and McClennan,1985)Fig.8 The trace element MORB patterns of the banded gneisses in Fuping area (normalization values after Taylor and McClennan,1985)
微量元素中富集Sr、Ba 等大离子亲石元素,亏损Nb、Ta、Ti、P 等高场强元素为特点(图8),Cr(5.9 ×10-6~119 ×10-6)、Ni(6.72 ×10-6~45.8 ×10-6)等相容元素含量也较低。由于Sr(303 ×10-6~431 ×10-6)含量高,Yb(0.31 ×10-6~1.75 ×10-6)和Y(3.61 ×10-6~18.88 ×10-6)含量较低,导致Sr/Y 比值较高(16.0 ~119.1)。其中F177-1、F177-2、F177-5、F177-6 样品岩性相近,其Cr(平均值27.5 ×10-6)、Ni(平均值13.6 ×10-6)含量与太古宙TTG 平均值(Martin,1994)相近,而F177-3 与F177-4 样品的Cr(119.4 ×10-6和60.7 ×10-6)、Ni(45.8 ×10-6和29.8 ×10-6)含量都较高。在原始地幔标准化的微量元素配分图解中各元素含量与曲线整体特征与Condie(1993)和Martin(1994)所做的太古宙TTG 平均成分微量元素原始地幔标准化图解基本一致(图8)。
该片麻岩具有高铝、富钠、贫钾的常量元素特征,具有轻稀土富集重稀土亏损、轻重稀土分馏较明显,弱的铕异常的稀土元素特征,其微量元素富集Ba、Sr 等大离子亲石元素,亏损Nb、Ta、Ti、P 等高场强元素及Cr、Ni、等相容元素,这些特征与太古宙高铝TTG 岩石的特征一致,表明该条带状片麻岩为典型的太古宙高铝TTG 岩系。同时上述特点还与埃达克岩的地球化学特征类似,除在MgO-SiO2图中有两个样品落在高硅埃达克岩(HAS)与低硅埃达克岩(LSA)重叠区域外,在其他图解中6 个样品均落入高硅埃达克岩区(图9)。
图9 阜平地区条带状片麻岩岩石地球化学投图(据Condie et al.,2005)Fig.9 Rock geological diagrams of the banded gneisses in Fuping area (after Condie et al.,2005)
关于TTG 的成因,如今已有较为统一的认识:TTG 岩浆由角闪榴辉岩(Barker and Arth,1976;Hunter et al.,1978;Condie,1981,1986;Martin,1986,1987,1993;Rapp et al.,1991;Bickle et al.,1993)或石英榴辉岩(Condie and Howard,1971;Arth and Hanson,1972,1975;Hanson and Goldich,1972;Compton,1978;Jahn et al.,1981;Gower et al.,1983;Rapp et al.,1991)部分熔融而成。也就是基性岩石在高压条件下的部分熔融。Martin(1987)提出了三阶段的成因模式,很好的解释了TTG 类岩石的各种地球化学特征。第一阶段是地幔部分熔融产生大量拉斑玄武质岩浆,这些岩浆轻稀土富集,明显区别与现代大洋中脊玄武岩;第二阶段是源于下地壳底部基性岩石的部分熔融,残留角闪石和石榴子石及少量单斜辉石和斜长石。第三阶段分离结晶,由于长英质岩浆较为粘稠阻止了大规模的矿物分离,一般分离结晶不超过30%。
这一模式已被普遍接受,只是对于第二阶段的动力学过程仍然存在较大分歧。主要分为两种观点:一种是板块模式,即认为是板块俯冲导致俯冲板片部分熔融,从而形成TTG 质的岩浆。特别是近年来人们对于TTG 岩石地球化学特征的认识,考虑到太古宙的热状态对板块模式的影响,参考新生代埃达克岩研究成果的,学者们倾向于认为TTG 岩石形成于热的年轻太古宙俯冲洋壳部分熔融(Martin,1994,1999;Defant et al.,2002);另一种则是非板块模式,认为TTG 的形成与地幔柱有关。在非板块模式下,也存在两种不同观点:一些学者认为是地幔柱环境下基性岩浆的底侵(underplating)造成太古宙大陆地壳的垂直生长,导致加厚下地壳的部分熔融(Arndt and Goldstein,1989;Kröner and Layer,1992)。另有学者认为TTG 岩浆产生于大洋高原根部带(Condie et al.,2005)。
图10 华北克拉通绿岩带划分模式图(据Zhai and Santosh,2011;Yang et al.,2013 修改)图中蓝色五角星所代表的各个地区~2.7Ga 岩石年龄纪录见前言所述Fig.10 Greenstone belt classification pattern of the North China Craton (revised after Zhai and Santosh,2011;Yang et al.,2013)
如果是加厚下地壳部分熔融形成的熔体一般富钾(Martin,1987;Jiang et al.,2007),且下地壳重熔一般会保留有老地壳的年龄信息(Gao et al.,2004;Jiang et al.,2007),此阜平条带状片麻岩以富钠贫钾为特征,且未发现有老的残留锆石年龄,所以该条带状片麻岩不太可能是由加厚下地壳部分熔融形成的。
一些部分熔融实验表明TiO2在岩浆中的含量和温度具有良好的正相关关系,相对低温的条件下部分熔融有利于含Ti 的矿物相稳定,高温则相反(Green and Pearson,1986;Xiong et al.,2005,2009)。有水环境下的部分熔融要求较低的温度,这样部分熔融的熔体具有相对较低的TiO2含量,无水条件的部分熔融要求更高的温度,这样部分熔融的熔体相对具有较高的TiO2含量(1% ~2%)(Rapp and Watson,1995),而大洋高原根部带环境为无水环境,这样的条件下部分熔融形成的熔体应具有较高的TiO2含量(1% ~2%)。此阜平TTG 片麻岩具有较低TiO2的含量(0.23% ~0.55%),表明其不太可能是产生于大洋高原根部带。
前已述及该阜平片麻岩属于高铝TTG,具有与高硅埃达克岩相似的地球化学特征,而高硅埃达克岩的板片俯冲成因模式被普遍认同。该阜平TTG 富集大离子亲石元素及亏损高场强元素等特征具有岛弧岩浆的特点。近些年来实验岩石学等证明TTG 岩石的矿物组合及地球化学特征要求含水的玄武质岩石在较高的压力条件下部分熔融(Rapp et al.,1991;Rapp and Watson,1995;Xiong,2006;Xiong et al.,2009)。在板片俯冲的构造背景下,这个压力条件很容易实现,因此越来越多的学者认为在太古宙存在类似板块构造背景下的板片俯冲作用,Martin(1994)称之为太古宙类板块构造(plate tectonic-like),这种构造背景下地热梯度高、地幔对流快、板块规模小、扩散速度快,且洋壳开始俯冲时比较年轻。这些特征导致了其部分熔融所产生的岩浆与现代岛弧岩浆既有某些类似又有明显的区别(程裕淇等,2004)。
综合上述分析,笔者认为该阜平~2.7Ga TTG 片麻岩可能是由热的年轻(新生)太古宙洋壳俯冲部分熔融形成。
阜平~2.7Ga TTG 片麻岩组成并不均匀,矿物含量和地球化学特征不尽相同。首先从稀土元素方面来讲,F177-1 和F177-6 样品表现为重稀土强烈亏损,轻重稀土的强烈分异;而F177-2、F177-3、F177-4 和F177-5 样品的重稀土亏损较弱。推测F177-1 和F177-6 样品原岩可能俯冲较深,为角闪榴辉岩或石榴角闪岩部分熔融而来,残留相为石榴石、角闪石、少量斜长石等等,由于残留相有石榴石,重稀土表现为严重亏损。F177-2、F177-3、F177-4 和F177-5 样品可能是由斜长角闪岩质的岩石部分熔融而来,残留相不存在或存在少量石榴石,从而得到的熔体重稀土亏损相对较弱。
综上所述,笔者推测可能存在不同俯冲深度所产生的岩浆进入同一岩浆房而出现岩浆不完全混合的现象,而导致岩石稀土元素含量等出现明显差异。
从全球范围看,TTG 总是与绿岩带伴生,并且通常作为绿岩带的基底。华北克拉通绿岩带具有与世界其他主要克拉通不同的特点,其火山-沉积岩系规模很小,TTG 所占的比例很大(耿元生等,2002),所以华北克拉通TTG 在一定程度上能代表绿岩带的分布。前已述及近些年随着研究的深入,~2.7Ga TTG 在华北克拉通的鲁西、胶东栖霞、皖北霍邱、武川西乌兰不浪、中条、恒山、阜平、赞皇、鲁山太华(稍老,为约2.75 ~2.8Ga)等多个地区得以发现,加之一些同位素证据表明华北克拉通很多2.5Ga 的花岗岩类是源于2.7Ga 岩石的重熔或再造(Geng et al.,2012;Yang et al.,2013;万渝生未发表资料)。因此,可以推测华北克拉通2.7Ga 绿岩带分布范围应该很大,只是后来遭受到2.5Ga 岩浆热事件的强烈改造,而残缺不全(Yang et al.,2013)。在华北克拉通绿岩带划分图(Zhai and Santosh,2011)中阜平和赞皇被划归2.5Ga绿岩带。近年来赞皇、阜平有多处~2.7Ga 岩石及碎屑锆石年龄的发现(Guan et al.,2002;Cheng et al.,2004;Han et al.,2012;Yang et al.,2013),加之南部稍老一点的鲁山太华杂岩,华北克拉通中部南北向的2.5Ga 绿岩带可能划归2.7Ga 绿岩带更为合适(图10)(Yang et al.,2013),只是在此基础上经历了晚期~2.5Ga 活动的强烈改造。
(1)该阜平条带状片麻岩原岩为英云闪长岩,属于高铝TTG,具有与高硅埃达克岩相似的地球化学特征,形成于~2.7Ga,可能是由热的太古宙年轻洋壳俯冲并发生部分熔融所形成的。
(2)该阜平~2.7Ga TTG 的厘定,再结合前人在华北克拉通不同地区所发现的~2.7Ga TTG 岩石以及TTG 的同位素模式年龄推断:华北克拉通~2.7Ga 岩浆热事件可能非常强烈,在阜平-赞皇一带可能存在一条~2.7Ga 绿岩带。
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report204Pb. Chem. Geol.,192(1 -2):59 -79
Arndt NT and Goldstein SL. 1989. An open boundary between lower continental crust and mantle:Its role in crust formation and crustal recycling. Tectonophysics,161(3 -4):201 -212
Arth JG and Hanson GN. 1972. Quartz diorites derived by partial melting of eclogite or amphibolite at mantle depths. Contributions to Mineralogy and Petrology,37(2):161 -174
Arth JG and Hanson GN. 1975. Geochemistry and origin of the Early Precambrian crust of northeastern Minnesota. Geochimica et Cosmochimica Acta,39(3):325 -362
Barker F and Arth JG. 1976. Generation of trondhjemitic-tonalitic liquids and Archean bimodal trondhjemite-basalt suites. Geology,4(10):596 -600
Barker F. 1979. Trondhjemites, Dacites, and Related Rocks.Amsterdam:Elsevier,1 -659
Bickle MJ,Bettenay LF,Chapman HJ,Groves DI,McNaughton NJ,Campbell IH and De Laeter JR. 1993. Origin of the 3500 ~3300Ma calc-alkaline rocks in the Pilbara Archaean: Isotopic and geochemical constraints from the Shaw Batholith. Precambrian Research,60(1 -4):117 -149
Black LP,Kamo SL,Allen CM,Aleinikoff JK,Davis DW,Korsch RJ and Foudoulis C. 2003. TEMORA 1:A new zircon standard for Phanerozoic U-Pb geochronology. Chem. Geol.,200:155 -170
Boynton WV. 1984. Cosmochemistry of the rare earth elements:Meteorite studies. In: Henderson P (ed.). Rare Earth Element Geochemistry. Amsterdam:Elsevier,63 -114
Cao GQ. 1996. Early Precambrian Geology of Western Shandong.Beijing:Geological Publishing House,1 -193 (in Chinese)
Cheng YQ,Yang CH,Wan YS,Liu ZX,Zhang XP,Du LL,Zhang SG,Wu JS and Gao JF. 2004. Early Precambrian Geological Characters and Anatectic Reconstruction of Crust in North Part of Middle Taihang Mountain. Beijing:Geological Publishing House,1 -191(in Chinese)
Compton P. 1978. Rare earth evidence for the origin of the Nûk gneisses Buksefjorden region,southern West Greenland. Contrib. Mineral.Petrol.,66(3):283 -294
Condie KC and Howard HL. 1971. Trace element geochemistry of the Louis lake batholith of Early Precambrian age,Wyoming. Geochim.Cosmochim. Acta,35(11):1099 -1119
Condie KC. 1981. Archaean Greenstone Belts. Amsterdam:Elsevier Science Ltd,1 -434
Condie KC. 1986. Origin and early growth rate of continents.Precambrian Research,32(4):261 -278
Condie KC. 1993. Chemical composition and evolution of the upper continental crust:Contrasting results from surface samples and shales. Chem. Geol.,104(1 -4):1 -37
Condie KC,Beyer E,Belousova E,Griffin WL and O’Reilly SY. 2005.U-Pb isotopic ages and Hf isotopic composition of single zircons:The search for juvenile Precambrian continental crust. Precambrian Research,139(1 -2):42 -100
Condie KC,Belousova E,Griffin WL and Sircombe KN. 2009. Granitoid events in space and time:Constraints from igneous and detrital zircon age spectra. Gondwana Research,15(3 -4):228 -242
Defant MJ,Xu JF,Kepezhinskas P,Wang Q,Zhang Q and Xiao L.2002. Adakites:Some variations on a theme. Acta Petrologica Sinica,18(2):129 -142
Diwu CR,Sun Y,Lin CL and Wang HL. 2010. LA-(MC)-ICPMS U-Pb zircon geochronology and Lu-Hf isotope compositions of the Taihua complex on the southern margin of the North China Craton. Chinese Science Bulletin,55(23):2557 -2571
Dong XJ,Xu ZY,Liu ZH and Sha Q. 2012. 2.7Ga granitic gneiss in the northern foot of Daqingshan Mountain,central Inner Mongolia,and its geological implications. Earth Science,37(Suppl.):20 -27 (in Chinese with English abstract)
Du LL,Zhuang YX,Yang CH,Wan YS,Wang XS,Wang SJ and Zhang LF. 2003. Characters of zircons in the Mengjiatun Formation in Xintai of Shandong and their chronological significance. Acta Geologica Sinica,77(3):359 - 366 (in Chinese with English abstract)
Du LL,Yang CH,Zhuang YX,Wei RZ,Wan YS,Ren LD and Hou KJ.2010. Hf isotopic compositions of zircons from 2. 7Ga metasedimentary rocks and biotite plagioclase gneiss in the Mengjiatun Formation complex,western Shandong Province. Acta Geologica Sinica,84(7):991 - 1001 (in Chinese with English abstract)
Faure M,Trap P,Lin W,Monie P and Bruguier O. 2007. Polyorogenic evolution of the Paleoproterozoic trans-north China belt:New insights from the Luliangshan-Hengshan-Wutaishan and Fuping massifs.Episodes,30(2):96 -107
Gao S,Rudnick RL,Yuan HL,Liu XM,Liu YS,Xu WL,Ling WL,Ayers J,Wang XC and Wang QH. 2004. Recycling lower continental crust in the North China Craton. Nature,432(7019):892 -897
Geng YS,Wu JS and Jin LG. 1986. Geochemistry and origin of amphibolites from the Fuping Group in the middle Taihang Mountains. Bulletin of the Institute of Geology,Chinese Academy of Geological Sciences,15:110 - 122 (in Chinese with English abstract)
Geng YS,Wan YS and Shen QH. 2002. Early Precambrian basic volcanism and crustal growth in the North China craton. Acta Geologica Sinica,76(2):199 - 208 (in Chinese with English abstract)
Geng YS,Shen QH and Ren LD. 2010. Late Neoarchean to Early Paleoproterozoic magmatic events and tectonothermal systems in the North China Craton. Acta Petrologica Sinica,26(7):1945 -1966(in Chinese with English abstract)
Geng YS,Du LL and Ren LD. 2012. Growth and reworking of the Early Precambrian continental crust in the North China craton:Constraints from zircon Hf isotopes. Gondwana Research,21(2 -3):517 -529 Gower CF,Crocket JH and Kabir A. 1983. Petrogenesis of Archean granitoid plutons from the Kenora area,English River Subprovince,Northwest Ontario,Canada. Precambrian Research,22(3 - 4):245 -270
Green TH and Pearson NJ. 1986. Ti-rich accessory phase saturation in hydrous mafic-felsic compositions at high P,T. Chemical Geology,54(3 -4):185 -201
Guan H,Sun M,Wilde SA,Zhou XH and Zhai MG. 2002. SHRIMP UPb zircon geochronology of the Fuping complex:Implications for formation and assembly of the North China craton. Precambrian Research,113(1 -2):1 -18
Han BF,Xu Z,Ren R,Li LL,Yang JH and Yang YH. 2012. Crustal growth and intracrustal recycling in the middle segment of the transnorth China orogen,North China Craton. Geological Magazine,149(4):729 -742
Hanson GN and Goldich SS. 1972. Early Precambrian rocks in the Saganaga lake,northern Light lake area,Minnesota-Ontario part 2:Petrogenesis. In:Doe BR and Smith DK (eds.). Studies in Mineralogy and Precambrian Geology. Geological Society of America Memoir,135:179 -192
Hunter DR,Barker F and Millard HT. 1978. The geochemical nature of the Archean ancient gneiss complex and granodiorite suite,Swaziland:A preliminary study. Precambrian Research,7(2):105-127
Jackson SE,Pearson NJ,Griffin WL and Belousova EA. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology,211(1 -2):47 -69
Jahn BM,Glikson AY,Peucat JJ and Hickman AH. 1981. REE geochemistry and isotopic data of Archean silicic volcanics and granitoids from the Pilbara block,Western Australia:Implications for the early crustal evolution. Geochimica et Cosmochimica Acta,45(9):1633 -1652 Jahn BM,Auvray B,Shen QH,Liu DY,Zhang ZQ,Dong YJ,Ye XJ,Zhang QZ,Cornichet J and Mace J. 1988. Archean crustal evolution in China:The Taishan complex,and evidence for juvenile crustal addition from long-term depleted mantle. Precambrian Research,38(4):381 -403
Jahn BM,Liu DY,Wan YS,Song B and Wu JS. 2008. Archean crustal evolution of the Jiaodong Peninsula,China,as revealed by zircon SHRIMP geochronology,elemental and Nd-isotope geochemistry.American Journal of Science,308(3):232 -269
Jayananda M,Moyen JF,Martin H,Peucat JJ,Auvray B and Mahabaleswar B. 2000. Late Archaean (2550 ~2520Ma)juvenile magmatism in the eastern Dharwar craton, southern India:Constraints from geochronology,Nd-Sr isotopes and whole rock geochemistry. Precambrian Research,99(3 -4):225 -254 Jiang N,Liu YS,Zhou WG,Yang JH and Zhang SQ. 2007. Derivation of Mesozoic adakitic magmas from ancient lower crust in the North China craton. Geochimica et Cosmochimica Acta,71(10):2591-2608
Kröner A,Compston W,Zhang GW,Guo AL and Todt W. 1988. Age and tectonic setting of Late Archean greenstone-gneiss terrain in Henan Province,China,as revealed by single-grain zircon dating.Geology,16:211 -215
Kröner A and Layer PW. 1992. Crust formation and plate motion in the Early Archean. Science,256(5062):1405 -1411
Kröner A,Wilde SA,Li JH and Wang KY. 2005. Age and evolution of a Late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. Journal of Asian Earth Sciences,24(5):577 -595
Li HK,Zhu SX,Xiang ZQ,Su WB,Lu SN,Zhou HY,Geng JZ,Li S and Yang FJ. 2010. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing,Beijing:Further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China. Acta Petrologica Sinica,26(7):2131 -2140(in Chinese with English abstract)
Liu DY,Wilde SA,Wan YS,Wang SY,Valley JW,Kita N,Dong CY,Xie HQ,Yang CX,Zhang YX and Gao LZ. 2009. Combined U-Pb,hafnium and oxygen isotope analysis of zircons from meta-igneous rocks in the southern north China craton reveal multiple events in the Late Mesoarchean-Early Neoarchean. Chemical Geology,261(1 -2):140 -154
Liu F. 2010. Geochemistry study of petrogenesis of the Late Archean Huai’an TTG gneisses terrane in the North China craton. Ph. D.Dissertation. Beijing:Institute of Geology and Geophysics,Chinese Academy of Sciences (in Chinese with English Summary)
Liu JH,Liu FL,Liu PH,Wang F and Ding ZJ. 2011. Polyphase magmatic and metamorphic events from Early Precambrian metamorphic basement in Jiaobei area:Evidences from the zircon UPb dating of TTG and granitic gneisses. Acta Petrologica Sinica,27(4):943 -960 (in Chinese with English abstract)
Liu SW. 1996. Study on the P-T path of granulites in Fuping area,Hebei Province. Geological Journal of Universities,2(1):75 - 84 (in Chinese with English abstract)
Liu SW. 1997. Study on fluid-rock equilibrium systems of Fuping gneiss complex,Taihang Mountains. Science in China (Series D),40(3):239 -245
Liu SW and Liang HH. 1997. Metamorphism of Al-rich gneisses in Taihang Mountain Archean metamorphic complex. Acta Petrologica Sinica,13(3):303 -312 (in Chinese with English abstract)
Liu SW,Li JH,Pan YM,Zhang J and Li QG. 2002a. An Archean Metamorphic block in the Taihangshan and Hengshan regions:Constraints from geochronology and geochemistry. Progress in Natural Science,12(8):568 -576
Liu SW,Pan YM,Li JH,Li QG and Zhang J. 2002b. Geological and isotopic geochemical constraints on the evolution of the Fuping complex,North China craton. Precambrian Research,117(1 -2):41 -56
Liu SW,Pan YM,Xie QL,Zhang J,Li QG and Yang B. 2005.Geochemistry of the Paleoproterozonic Nanying granitic gneisses in the Fuping complex:Implications for the tectonic evolution of the central zone,North China craton. Journal of Asian Earth Sciences,24(5):643 -658
Lu SN,Chen ZH and Xiang ZQ. 2008. Geochronological Framework of Ancient Intrusions in Taishan Geopark,China. Beijing:Geological Publishing House,1 -90 (in Chinese)
Ludwig KR. 2003. User’s Manual for Isoplot/Ex,Version 3. 00. In:A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center:Special Publication,No.4:1 -70
Ma MZ,Xu ZY,Zhang LC,Dong CY,Dong XJ,Liu SJ,Liu DY and Wan YS. 2013. SHRIMP dating and Hf isotope analysis of zircons from the Early Precambrian basement in the Xi Ulanbulang area,Wuchuan,Inner Mongolia. Acta Petrologica Sinica,29(2):501 -516 (in Chinese with English abstract)
Ma XY,You ZD,Tan YJ and Cai XL. 1963. Tectonic pattern in Precambrian of East China. Acta Geologica Sinica,43(1):27 -52(in Chinese)
Martin H. 1986. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology,14(9):753-756
Martin H. 1987. Petrogenesis of Archaean trondhjemites,tonalites,and granodiorites from eastern Finland: Major and trace element geochemistry. Journal of Petrology,28(5):921 -953
Martin H. 1993. The mechanisms of petrogenesis of the Archaean continental crust:Comparison with modern processes. Lithos,30(3-4):373 -388
Martin H. 1994. Archean grey gneisses and the genesis of the continental crust. In: Condie KC (ed.). Archean Crustal Evolution.Amsterdam:Elsevier,205 -259
Martin H. 1999. Adakitic magmas:Modern analogues of Archaean granitoids. Lithos,46(3):411 -429
Rapp RP,Watson EB and Miller CF. 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Research,51(1 -4):1 -25
Rapp RP and Watson EB. 1995. Dehydration melting of metabasalt at 8~32kbar:Implications for continental growth and crust-mantle recycling. Journal of Petrology,36(4):891 -931
Ren LD,Geng YS,Du LL,Wang YB,Liu P and Guo JJ. 2011.Anatexis and migmatization of the Fuping complex,North China craton. Acta Petrologica Sinica,27(4):1056 -1066 (in Chinese with English abstract)
Shen QH,Geng YS,Song B and Wan YS. 2005. New information from the surface outcrops and deep crust of Archean rocks of the North China and Yangtze blocks,and Qinling-Dabie orogenic belt. Acta Geologica Sinica,79(5):616 - 627 (in Chinese with English abstract)
Sun Y,Yu ZP and Kröner A. 1994. Geochemistry and single zircon geochronology of Archaean TTG gneisses in the Taihua high-grade terrain,Lushan area,central China. Journal of Southeast Asian Earth Sciences,10(3 -4):227 -233
Tang J,Zheng YF,Wu YB,Gong B and Liu XM. 2007. Geochronology and geochemistry of metamorphic rocks in the Jiaobei terrane:Constraints on its tectonic affinity in the Sulu orogen. Precambrian Research,152(1 -2):48 -82
Taylor SR and McClennan SM. 1985. The Continental Crust:Its Composition and Evolution. London: Blackwell Scientific Publications,57 -72
Wan YS,Dong CY,Wang W,Xie HQ and Liu DY. 2010. Archean basement and a Paleoproterozoic collision orogen in the Huoqiu area at the southeastern margin of North China craton:Evidence from sensitive high resolution ion micro-probe U-Pb zircon geochronology.Acta Geologica Sinica,84(1):91 -104
Wan YS,Dong CY,Liu DY,Kröner A,Yang CH,Wang W,Du LL,Xie HQ and Ma MZ. 2012. Zircon ages and geochemistry of Late Neoarchean syenogranites in the North China craton:A review.Precambrian Research,222 -223:265 -289
Wang KY,Li JL and Liu RQ. 1991. Origin of the Fuping gneisses,Scientia Geologica Sinica,3:255 -267 (in Chinese with English abstract)
Wang W,Yang EX,Wang SJ,Du LL,Xie HQ,Dong CY and Wan YS.2009. Petrography of the metamorphic pillow basalt and SHRIMP UPb dating of zircons from the intruding trondhjemite in Archean Taishan“Group”,western Shandong. Geological Review,55(5):737 -744 (in Chinese with English abstract)
Wilde SA,Cawood PA and Wang KY. 1997. The relationship and timing of granitoid evolution with respect of felsic volcanism in the Wutai Complex,North China Craton. Proceeding of the 30thIGC:Precambrian Geol. Metamorph. Petrol. 17:75 -88
Wilde SA,Cawood PA,Wang K et al. 2005. Granitoid evolution in the Late Archean Wutai Complex,North China Craton. Journal of Asian Earth Sciences,24(5):597 -613
Wu JS,Geng SY,Xu HF,Jin LG,He SY and Sun SW. 1989.Metamorphic geology of the Fuping Group. Bulletin of the Institute of Geology,Chinese Academy of Geological Sciences,19:1 -213 (in Chinese with English abstract)
Xiong XL,Adam J and Green TH. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt:Implications for TTG genesis. Chemical Geology,218(3 -4):339-359
Xiong XL. 2006. Trace element evidence for growth of early continental crust by melting of rutile-bearing hydrous eclogite. Geology,34(11):945 -948
Xiong XL,Keppler H,Audétat A,Gudfinnsson G,Sun WD,Song MS,Xiao WS and Yuan L. 2009. Experimental constraints on rutile saturation during partial melting of metabasalt at the amphibolite to eclogite transition,with applications to TTG genesis. American Mineralogist,94(8 -9):1175 -1186 Yang CH,Du LL,Ren LD,Song HX,Wan YS,Xie HQ and Liu ZX.2011. Petrogenesis and geodynamic setting of Jiandeng potassic granite at the end of the Neoarchean in Zanhuang complex,North China Craton. Earth Science Frontiers,18(2):62 -78 (in Chinese with English abstract)
Yang CH,Du LL,Ren LD,Song HX,Wan YS,Xie HQ and Geng YS.2013. Delineation of the ca. 2.7Ga TTG gneisses in the Zanhuang complex,North China Craton and its geological implications. Journal of Asian Earth Sciences,72:178 -189
Zhai MG and Santosh M. 2011. The Early Precambrian odyssey of the North China Craton:A synoptic overview. Gondwana Research,20(1):6 -25
Zhang SG,Jin LG and Xiao QH. 1983. Structural style and deformational history of the Fuping Archean domal composite fold group. Regional Geology of China,(6):97 - 110 (in Chinese with English abstract)
Zhao GC,Wilde SA,Cawood PA and Lu LZ. 2000. Petrology and P-T path of the Fuping mafic granulites:Implications for tectonic evolution of the central zone of the North China Craton. Journal of Metamorphic Geology,18:375 -391
Zhao GC,Wilde SA,Cawood PA and Sun M. 2002. SHRIMP U-Pb zircon ages of the Fuping complex:Implications for Late Archean to Paleoproterozoic accretion and assembly of the North China Craton.American Journal of Science,302(3):191 -226
Zhao GC,Sun M,Wilde SA and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues revisited. Precambrian Research,136(2):177 -202
Zhu XY,Zhai MG,Chen FK,Lyu B,Wang W,Peng P and Hu B.2013. ~2.7Ga crustal growth in the North China craton:Evidence from zircon U-Pb ages and Hf isotopes of the Sushui complex in the Zhongtiao terrane. The Journal of Geology,121:239 -254
Zhuang YX,Wang XS,Xu HL,Ren ZK,Zhang FZ and Zhang XM.1997. Main geological events and crustal evolution in Early Precambrian of Taishan region. Acta Petrologica Sinica,13(3):313-330 (in Chinese with English abstract)
附中文参考文献
曹国权. 1996. 鲁西早前寒武纪地质. 北京:地质出版社,1 -193
程裕淇,杨崇辉,万渝生,刘增校,张西平,杜利林,张寿广,伍家善,高吉凤. 2004. 太行山中北段早前寒武纪地质和深熔作用对地壳岩石的改造. 北京:地质出版社,1 -191
董晓杰,徐仲元,刘正宏,沙茜. 2012. 内蒙古大青山北麓2.7Ga 花岗质片麻岩的发现及其地质意义. 地球科学,37(增刊):20-27
杜利林,庄育勋,杨崇辉,万渝生,王新社,王世进,张连峰. 2003.山东新泰孟家屯岩组锆石特征及其年代学意义. 地质学报,77(3):359 -366
杜利林,杨崇辉,庄育勋,韦汝征,万渝生,任留东,侯可军. 2010.鲁西新泰孟家屯2.7Ga 变质沉积岩与黑云斜长片麻岩锆石Hf同位素特征. 地质学报,84(7):991 -1001
耿元生,伍家善,金龙国. 1986. 太行山中段阜平群角闪质岩石的地球化学特征及其成因. 中国地质科学院地质研究所所刊,15:110 -122
耿元生,万渝生,沈其韩. 2002. 华北克拉通早前寒武纪基性火山作用与地壳增生. 地质学报,76(2):199 -208
耿元生,沈其韩,任留东. 2010. 华北克拉通晚太古代末-古元古代初的岩浆事件及构造热体制. 岩石学报,26(7):1945 -1966
李怀坤,朱士兴,相振群,苏文博,陆松年,周红英,耿建珍,李生,杨锋杰. 2010. 北京延庆高于庄组凝灰岩的锆石U-Pb 定年研究及其对华北北部中元古界划分新方案的进一步约束. 岩石学报,26(7):2131 -2140
刘富. 2010. 华北克拉通晚太古代怀安TTG 片麻岩地体的岩石成因地球化学研究. 博士学位论文. 北京:中国科学院地质与地球物理研究所
刘建辉,刘福来,刘平华,王舫,丁正江. 2011. 胶北早前寒武纪变质基底多期岩浆-变质热事件:来自TTG 片麻岩和花岗质片麻岩中锆石U-Pb 定年的证据. 岩石学报,27(4):943 -960
刘树文. 1996. 阜平地区麻粒岩的P-T 路径研究. 高校地质学报,2(1):75 -84
刘树文,梁海华. 1997. 太行山太古宙变质杂岩中富铝片麻岩的变质作用. 岩石学报,13(3):303 -312
陆松年,陈志宏,相振群. 2008. 泰山世界地质公园:古老侵入岩系年代格架. 北京:地质出版社,1 -90
马铭株,徐仲元,张连昌,董春艳,董晓杰,刘守偈,刘敦一,万渝生. 2013. 内蒙古武川西乌兰不浪地区早前寒武纪变质基底锆石SHRIMP 定年及Hf 同位素组成. 岩石学报,29(2):501-516
马杏垣,游振东,谭应佳,蔡学林. 1963. 中国东部前寒武纪大地构造发展的样式. 地质学报,43(1):27 -52
任留东,耿元生,杜利林,王彦斌,刘平,郭进京. 2011. 华北克拉通阜平杂岩的深熔和混合岩化作用. 岩石学报,27(4):1056-1066
沈其韩,耿元生,宋彪,万渝生. 2005. 华北和扬子陆块及秦岭-大别造山带地表和深部太古宙基底的新信息. 地质学报,79(5):616 -627
王凯怡,李继亮,刘如琦. 1991. 阜平片麻岩之成因. 地质科学,(3):255 -267
王伟,杨恩秀,王世进,杜利林,颉颃强,董春艳,万渝生. 2009. 鲁西泰山岩群变质枕状玄武岩岩相学和侵入的奥长花岗岩SHRIMP 锆石U-Pb 年代学. 地质论评,55(5):737 -744
伍家善,耿元生,徐惠芬,金龙国,贺绍英,孙世伟. 1989. 阜平群变质地质. 中国地质科学院地质研究所所刊,19:1 -213
杨崇辉,杜利林,任留东,宋会侠,万渝生,颉颃强,刘增校. 2011. 赞皇杂岩中太古宙末期菅等钾质花岗岩的成因及动力学背景. 地学前缘,18(2):62 -78
张寿广,金龙国,肖庆辉. 1983. 阜平太古宙穹状复合褶皱群的构造样式及变形史. 中国区域地质,(6):97 -110
庄育勋,王新社,徐洪林,任志康,张富中,张锡明. 1997. 泰山地区早前寒武纪主要地质事件与陆壳演化. 岩石学报,13(3):313 -330