稀土元素地球化学分析在地质学中的意义

2014-04-12 03:22周国兴赵恩好岳明新曹丹红
地质与资源 2014年5期
关键词:球粒分异图解

周国兴,赵恩好,岳明新,曹丹红

(沈阳地质矿产研究所/中国地质调查局沈阳地质调查中心,辽宁沈阳 110032)

稀土元素地球化学分析在地质学中的意义

周国兴,赵恩好,岳明新,曹丹红

(沈阳地质矿产研究所/中国地质调查局沈阳地质调查中心,辽宁沈阳 110032)

稀土元素在地质学中具有重要的示踪意义,通过对稀土元素的地球化学特征进行研究,可以很好地解释一些地质现象,揭示矿物甚至矿床的成因,指导找矿,为地质学的发展提供有力的技术支撑.

稀土元素;微量元素;地球化学;地质学

在地质样品的测试分析中,除了成矿的主量元素以外,地质样品中的微量元素测试,对于理论研究和地质找矿工作同样具有显著意义.所谓主量元素,是指岩石中该元素氧化物的质量丰度大于0.1%;微量(痕量)元素的质量丰度小于0.1%;超微量元素小于0.1×10-6.有的学者把地球化学体系中浓度低到近似符合稀溶液定律范围的元素称为微量元素,根据这一定义,可以认为微量元素在不同的岩性岩体中可能也存在一定的分配系数,而这是地质学中应用微量元素的一个重要方法.

1 微量元素在共存相中的分配

在一定的环境(物理化学条件)中,一切自然作用体系均趋向于平衡.当达到平衡时,微量元素在一定程度上遵循能斯特分配定律:一定温度压力下,微量元素在平衡共存的两相之间进行分配,其分配系数KD是一常数,其大小等于微量元素在两相中浓度的比值,即KD=Xia/Xib.微量元素在岩石与熔体之间的分配系数常用岩石中所有矿物的分配系数与岩石中各矿物含量的乘积之和一表达:

式中n为含量微量元素i的矿物数;Wj为第j种矿物的质量百分数;KDi为第j种矿物对微量元素的简单分配系数.分配系数受体系组分——硅酸盐熔体的结构、体系温度、体系压力等因素影响.分配系数的应用如下.

(1)检验成岩、成矿过程的平衡性.一定温度、压力下各相处于平衡时,元素在共存矿物间的分配系数为一常数,可据此来检验自然过程是否达到平衡.方法为:①在体系的不同部位(为同时同成因的产物)采集若干个同种共存矿物的样品;②测定矿物对中某微量元素的含量;③计算分配系数,若接近某固定值,则可视成岩、成矿过程达到了平衡.

(2)判别岩浆结晶过程中微量元素的地球化学行为.利用瑞利分馏定律,将岩浆结晶中某微量元素的瞬间浓度相对于该元素的原始浓度比值(XTr熔体/ X0Tr熔体)作为纵坐标,以反映岩浆结晶程度的F为横坐标,并赋于KD不同的值,即可作出反映元素行为的图解(图1).

图1 微量元素结晶图解Fig.1 Crystallization diagram of trace elements

①KD<1的微量元素:都随着F值从1到0(代表结晶程度不断提高)的变化,而在残余的熔体中逐步富集起来,这些元素称为不相容元素(incompatible element),如W、Sn、Mo、Cu等(微观角度:残余富集);

②KD>1的微量元素:则倾向在结晶矿物中富集.随着矿物不断晶出,在残余熔浆中逐渐贫化,这些元素即相容元素(compatible elements),如Ni、Co、Cr等(微观角度:晶体化学分散).

(3)微量元素分配系数温度计

当微量元素在共存各相中分配达到平衡时,有如下函数关系:

以-(ΔH/R)为斜率,B为截距,即当在所讨论范围内ΔH(热焓)可看作为常数时,分配系数(KD)的对数与温度倒数(1/T)存在线性关系.

根据以上介绍的微量元素的分配性质,可以绘制出其构造环境的判别图,这不仅仅用于岩石形成构造环境的识别,有些图解还可示踪成岩过程,这是基于构造图解的微量元素参数是岩石源区物质及成岩过程(交代富集、部分熔融、分离结晶等)的指标[1].

2 稀土元素地球化学

由于以往分析技术水平低,误认为稀土元素在地壳中很稀少,一般发现于富集的风化壳上,呈土状,故名稀土.实际上稀土并不稀,稀土元素(REE)的地壳丰度为0.017%,其中Ce、La、Nd的丰度比W、Sn、Mo、Pb、Co还高.中国是稀土大国,稀土矿尤为丰富.稀土按照其原子量的大小可以分为轻稀土(LREE,即Ce族稀土或ΣCe:La—Eu轻稀土)和重稀土(HREE,即Y族稀土或ΣY:Gd—Y重稀土).也有的学者把稀土分为3个类别,分别是轻稀土:La—Nd;中稀土:Sm—Ho;重稀土:Er—Lu+Y.络合物是稀土元素的主要迁移形式,稀土元素的碳酸盐、硫酸盐、氟化物的络合物易溶于水而进行迁移,如Na3[REEF6]、Na3[REE(CO3)3]、Na3[REE(SO4)3]等.在地壳中,从超基性岩→基性岩→中性岩→酸性岩→碱性岩,ΣREE是逐渐增加的;从地幔到地壳,ΣREE增加了20多倍,ΣCe/ΣY增加了3倍多;地幔、超基性岩、基性岩中ΣY占优势,随着分异,陆壳及酸性岩、碱性岩以ΣCe占优势.15个稀土元素在地壳中明显呈现出偶数元素高于相邻奇数元素的丰度(奇偶效应)的现象,为了便于对比研究,需消除奇偶效应,数据需进行标准化处理,即将岩石、矿物中某稀土元素含量除以球粒陨石的含量,例如La玄武岩/La球粒陨石=7.28/0.32=22.75.地壳中各类岩石稀土元素相对丰度曲线,根据Eu和Ce的分布可分为5种类型,见图2.

图2 地壳中各类岩石稀土元素相对丰度曲线Fig.2 Abundance curve for REE in earth crust

按ΣLREE和ΣHREE的含量比例不同,又可以分为右倾型:ΣLREE>ΣHREE;平缓型:ΣLREE≈ΣHREE;左倾型:ΣLREE<ΣHREE.稀土元素在自然界的分异,受溶液酸碱性、氧化还原条件、络离子稳定性的差异、被吸附能力的差异、结晶矿物和熔体中的分异等因素控制.关于稀土元素数据的整理方法,主要有以下5种.

(1)稀土总量和轻重稀土比值

稀土元素在自然界的分异(稀土总量):ΣREE;稀土元素在地壳中的分配(轻重稀土比值):ΣCe/ΣY、La/ Yb、La/Lu;

(2)某些特殊元素比值(δEu、δCe)

负铕指数δEu,用来指示铕异常的大小:

孙超等[2]从稀土的全量特征和分馏特征两方面对鞍山市铁矿区的土壤稀土元素进行系统研究,结果表明:齐大山区和大孤山区土壤稀土元素总量均值分别为195.50×10-6和278.57×10-6,均高于中国大陆土壤中稀土元素的含量(187.60×10-6);大孤山区ΣREE平均含量明显高于齐大山区,并且每项稀土元素的含量都高于齐大山区;二区内ΣCe/ΣY值均大于l,分馏比值(La/Yb)N>(La/Sm)>(Gd/Yb)N,δEu<l,δCe接近l;土壤中稀土元素含量遵循奥多-哈金斯法则,含量分布基本保持一致,土壤中轻重稀土元素分馏明显,呈现轻稀土元素相对富集;Ce元素无异常,Eu元素亏损[2].

(3)曾田彰正-科里尔图解

样品中每种稀土元素浓度除以参照物质(常为球粒陨石)中各稀土元素浓度,得到标准化丰度.有人将研究体系的一部分作为参考物质作标准化图解.例如,各种不同构造环境的玄武岩用大洋拉斑玄武岩作为参考物质,能较清楚地显示出不同玄武岩稀土彼此分异的程度和数量.早在20上世纪80年代,赵振华等[3]对西藏南部花岗岩类的稀土元素地球化学特征进行了研究,重点讨论了其丰度及变化规律,划分了岩石的稀土组成模式类型,给出了该地花岗岩为深成型和浅成型两种成因类型的解释[3].

(4)稀土配分三角图解

①把总量做分母,每个分量做分子,乘以100%,算出各元素在总量中所占百分数;

②把各分量分成轻、中、重3部分作三角图解(图3);

③把各样品投在三角图解,分析岩石(矿物)轻、中、重稀土时空变化趋势.

图3 稀土配分三角图解Fig.3 Triangular diagram for REE distribution

(5)稀土参数图解

这类图解很多,可用于探讨岩石形成机理或成因分类.如La/Yb-REE图解(图4),用以区分不同类型的玄武岩、花岗岩和碳酸盐岩.

图4 地球岩石的La/Yb-REE图解Fig.4 La/Yb-REE diagram

稀土元素地球化学之所以在微量元素地球化学中占据很重要的地位,这主要是由稀土元素以下4个优点所决定的:

①它们是性质极相似的地球化学元素组,在地质、地球化学作用过程中作为一个整体而活动——集体观念强;

②其分馏作用能灵敏地反映地质、地球化学过程的性质——指示功能强;

③稀土元素除受岩浆熔融作用外,其他地质作用基本上不破坏其整体组成的稳定性——应变能力强;

④在地壳岩石中分布较广——广泛性.

基于以上4点,任耀武[4]探讨了岩石、矿物甚至矿床成因,对稀土元素在地质科研及找矿工作中的应用进行了概括总结,具体如下.

(1)ΣREE:稀土元素总量,单位以10-6计,一般包括Y,有的不包括,应注明.ΣREE在岩浆岩中按超基性→基性→中性→酸性→碱性顺序递增.

(2)LREE、HREE:即轻、重稀土含量,单位以10-6计.

(3)LREE/HREE或ΣCe/ΣY:轻、重稀土元素含量比值,反映轻、重稀土元素分异程度.HREE形成络合物的能力及迁移能力均大于LREE,所以依岩浆分异演化顺序从早到晚递增.

(4)δEu:表示Eu异常度.δEu>1为正异常,反之为负异常,等于1为无异常.采用球粒陨石标准化后数值计算,其计算公式为:δEu=(Eu)N/0.5(Sm+Nd)N(在稀土元素特征指数中,凡右下角标有N者,即是用球粒陨石标准化后计算).在稀土元素球粒陨石标准化图解(又称科里尔图解)中,正异常为峰,负异常为谷,无异常为直线.δEu值越小,则岩石的分异指数(DI)越大,则分异度越高.造成Eu严重亏损主要有3个原因,即多次分馏、广泛交代作用及多阶段分离结晶的结果(Zielinski和Frey).Drake(1975)认为:δEu与fo2存在反比关系,Taylor认为:太古宙以后的沉积岩,δEu<1,太古代以前者,δEu≥1.据王中刚报道,δEu大的花岗岩多由地壳深部较基性的岩石经重熔作用或基性岩浆分异作用形成,而δEu值小的花岗岩则为地壳浅部岩石经重熔作用形成.

(5)Eu/Sm:Cullers等用此指数表示Eu异常度,以球粒陨石的Eu/Sm=0.35为标准,大于此值为Eu正异常,小于此值为Eu负异常,等于此值为Eu无异常.实际上Eu/Sm值反映的是岩浆演化分异程度.

(6)δCe:表示Ce异常度,δCe>1为Ce正异常,δCe<1为Ce负异常,δCe=1为Ce无异常.δCe是由稀土元素含量经球粒陨石标准化后计算的,其计算公式为:δCe=(Ce)N/0.5(La+Pr)N.一般认为Ce亏损是古俯冲带及古洋壳残骸标志之一.

(7)(La/Yb)N、(La/Lu)N、(Ce/Yb)N:这3个指数是球粒陨石标准化科里尔图解中曲线斜率的程度,反映轻重稀土分馏度.在岩浆岩中,一般侵位浅者大于侵位深者.这些指数值大,即斜率大,曲线右倾(左高右低),说明富集LREE(如酸性岩浆岩);如这些指数值近似于1,曲线走势接近水平,属球粒陨石型模式(如大洋拉斑玄武岩、科马提岩等);此值小于1,为亏损型,即HREE富集型(如浅色花岗岩等).

(8)La/Sm:反映轻稀土分馏度,此值越大,LREE越富集.

(9)(Gd/Yb)N:反映重稀土分馏度,此值越小,重稀土越富集、LREE/HREE越小.

(10)Sm/Nd:划分轻、重稀土富集类型,此值小,为轻稀土富集型.Sm/Nd值在岩浆岩中从超基性→基性→中性→酸性→碱性渐减,一般低于球粒陨石标准值(0.33).Sm/Nd深源大于浅源,壳层为0.1~0.31,深源可达0.5~1.0.据Ю·A·巴拉索夫,地壳Sm/Nd初始值为0.308,大洋玄武岩为0.234~0.425,壳源花岗岩及沉积岩小于0.3.

(11)Nd/Eu:稀土元素分馏重熔度.

(12)Y/La:此值与深度成正比.

(13)La/Yb:轻稀土分馏度,此值大,富集轻稀土.

(14)La/Y:与重熔度相关,此值浅源大于深源.

(15)Ce/Nd:此值浅源大于深源.

(16)Ce/La:侵位浅大于侵位深者.

(17)EV/OD:稀土元素奇偶比值:即偶数稀土元素(EV)含量之和与奇数稀土元素(OD)含量之和的比值.反映岩石成因类型及岩浆演化规律,岩浆岩从基性→酸性或从侵位深→侵位浅,此值一般趋于减小.

(18)稀土元素四分组效应:最早由Peppard等(1969)提出,即把稀土元素按其性质的相似变化分成四组:La-Ce-Pr-Nd,(Pm)-Sm-Eu-Gd,Gd-Tb-DY-Ho和Er-Tm-Yb-Lu,并进一步划分为W型和M型,W型分布曲线为Dy、Yb下凹而Er上凸;而M型则相反,Ce、Sm、Dy上凸,而Nd、Gd及Er下凹.稀土元素如存在四分组效应,说明在其演化(或成岩成矿)过程中有水参与[4].

此处只列出了常用稀土元素特征指数的种类、计算方法及其指示意义,至于造成其变异的原因,将有专文报道.

庞奖励以二道沟矿床为例,研究了稀土的示踪作用,通过对稀土元素地球化学的研究,证实成矿物质来源于火山岩并非来源于对面沟花岗闪长岩,为进一步研究该矿床提供了新的证据[5].

总之,微量元素特别是稀土元素在地质学中具有重要的示踪意义,微量元素在地球系统中不是独立存在的,它们与各种地球物质的地质过程相联系,参与各种地球化学作用,作用过程中体系物理化学状态的转变,作用物质的质量迁移,能量的输运与动量的传递等,必然在微量元素组成上打上作用随时间演化的烙印.为此,通过观察、捕捉微量元素提供的地球化学作用的时空信息,可用来解释各种复杂的地质作用的原因和条件,追踪作用演化历史,使为地球科学基础理论的发展,为人类提供充足资源和良好生存环境等作出贡献成为可能.

[1]赵振华.关于岩石微量元素构造环境图解使用的有关问题[J].大地构造及成矿学,2007,31(1):92—103.

[2]孙超,李月芬,王冬艳,等.鞍山市铁矿区土壤稀土元素的地球化学特征[J].吉林农业大学学报,2011,33(3):301—305.

[3]赵振华,王一先,钱志鑫,等.西藏南部花岗岩类稀土元素地球化学[J].地球化学,1981(1):26—35.

[4]任耀武.稀土元素演化特征及应用[J].河南地质,1998,16(4):303—308.

[5]庞奖励.稀土元素的示踪作用研究——以二道沟矿床为例[J].山西师范大学学报:自然科学版,1997,25(4):78—83.

GEOLOGICAL SIGNIFICANCE OF RARE EARTH ELEMENTS IN GEOCHEMICAL ANALYSIS

ZHOU Guo-xing,ZHAO En-hao,YUE Ming-xin,CAO Dan-hong
(Shenyang Institute of Geology and Mineral Resources,CGS,Shenyang 110032,China)

Rareearthelements(REEs)areimportanttracersin geological study.Analysis on the geochemical characteristics of REEs can well explain some geological phenomena,reveal the genesis of minerals even deposits and guide prospecting, whichprovidestrongtechnicalsupportforthedevelopmentofgeology.

rare earth element(REE);trace element;geochemistry;geology

1671-1947(2014)05-0495-05

P595

A

2013-07-11;

2013-08-27.编辑:周丽、张哲.

周国兴(1955—),男,高级工程师,现主要从事分析测试工作,通信地址辽宁省沈阳市皇姑区北陵大街26甲3号,E-mail//wind31333@163.com

猜你喜欢
球粒分异图解
天选之子
Kainsaz(CO3)陨石中两个富Al球粒的氧同位素组成特征与形成演化
扫描电镜下地质矿物的物相分析
重庆市臭氧时空分异及其影响因素研究
图解十八届六中全会
平泉县下营坊杂岩体分异演化及其成岩成矿
图解天下
荷叶塘陨石:一个L3 型普通球粒陨石的岩石学和地球化学特征*
北京市1989-2010年地表温度时空分异特征分析
山西省适垦耕地及其空间分异特征