王 政,孟倩倩,钟国华
(华南农业大学资源环境学院,广州 510642)
昆虫的取食行为是昆虫在接受内外信息后,由神经系统和肌肉系统作出的综合反应,表现出摄取食物以及与此相关的一系列活动(周天牧等,2004)。一般同种昆虫个体的取食行为既表现出种群的相似性又表现出种所特有的固定模式,其主要受两个因素的影响:营养需求和食物适合度(Dus et al.,2011)。尽管昆虫对食物的选择方式不同,但其觅食行为可以分解为一个相当恒定的连锁过程,并且每个环节的完成都能促进下一环节的开始。这一连锁过程可分五部分:(1)定位寄主栖境,其中绝大多数定向行为是通过遗传而不是学习获得的(高月波和翟保平,2010);(2)寻找食物;(3)辨别食物;(4)接受食物;(5)选择最适食物(Matthews and Matthews,2010)。然而各个环节又有着不同的感觉机制,昆虫在接触植物前的定向、降落运动阶段,主要受植物的光学和气味特点的影响,因此视觉和嗅觉起着主导作用;当其接触到植物后,触角、跗足等部位的味觉感受器会对植物适合度进行评价(陆宴辉等,2008)。该行为链几乎涉及昆虫所有的感觉机制,其中化学感受占主导地位(Matthews and Matthews,2010),且在各种感觉机制相互作用的同时,神经与激素调节也贯穿着信号传导过程的始终,如神经肽F (NPF)在昆虫取食与代谢过程中的重要作用(Nässel and Wegener,2011;Wielendaele et al.2013)。
由于在昆虫个体生存、种群繁衍、环境适应、害虫防治方面的重要意义,昆虫取食行为一直是国内外的研究热点。本文将重点介绍昆虫取食行为机制研究进展,以期为明确昆虫与环境相互关系、开发害虫行为调控新技术等相关研究提供参考。
昆虫对食物有一定的选择性,用以识别和选择食物的方式多种多样,但多以化学刺激作为决定择食的最主要因素。化学感受器是昆虫识别寄主的主要工具,昆虫的取食行为取决于从化学感受器输入的感觉信号,如植食性昆虫通常以植物的次生物质作为信息化合物或取食刺激剂,捕食性昆虫则多以猎物的气味为刺激取食的因子。昆虫借助内部和外部信号主动调整姿态及其空间位置(Jander,1963),视觉、气味、声音、信息素和热源辐射等都对昆虫近距离寻找食物寄主行为有重要帮助 (Farkas and Shorey,1972;Tobin,1981;Flores and Lazzari,1996;Poulet et al.,2005)。
昆虫的视觉感受器是感受光波刺激的器官,其感觉细胞中的色素能对一定范围内的光谱(253-700 nm)产生生物电位,传递给中枢神经系统引起视觉反应。昆虫在寄主定向过程中视觉感器具有对物体颜色、形状及大小的分辨能力,当收到一定的光波刺激后,视觉感受器表面的膜产生激应性,引起膜电位改变产生动作电位,动作电位沿着感觉细胞的端突或树突传到神经细胞,引起神经纤维产生神经冲动(彩万志等,2001)。现已证实梅象Conotrachelus nenuphar 由越冬地区的春季迁出是通过气味和视觉线索共同定位寄主的(Butkewich and Prokopy,1997);实蝇类和甲虫的磁罗盘定向过程(magnetic compass orientation)是依赖光波的(Dommer et al.,2008;Phillips et al.,2010);视觉信号在天牛寄主选择过程中亦扮演着重要角色 (De Groot and Nott,2001;Mcintosh et al.,2001;Morewood et al.,2002);树的轮廓可以为小蠹虫提供了视觉刺激以帮助小蠹虫远距离寄主定位 (Tilden et al.,1983;Wyatt et al.,1997);蚋Simulium annulus 在没有化学气味作为线索的情况下,仍可通过视觉线索定位寄主鸟类(Weinandt et al.,2012)。但昆虫在寄主定位过程中视觉感受行为并不是独立的,其在视觉定位的同时嗅觉感受也发挥着重要作用,如Vuts 等(2012)的田间诱捕实验中,花金龟Oxythyrea cinctella 分别通过嗅觉线索或视觉线索定位寄主的能力远低于通过二者协同定位的能力。近期研究表明,一些昆虫在缺乏嗅觉线索的时候,可以用视觉线索来取代嗅觉线索来定位寄主 (Reeves,2011),特别是对植食性森林昆虫而言,视觉刺激在昆虫寄主定位过程中与嗅觉刺激同等重要(Machial et al.,2012)。
昆虫在觅食和寻找寄主行为中,嗅觉感受器发挥着极其重要的作用。昆虫的嗅觉感受器腔中存在一种蛋白,该蛋白能够结合外界挥发性的小分子化合物,并运送这些外界信号分子到达受体分子,这种气味受体被认为是一种G 蛋白偶联受体,胞外化学信号到达受体后,将化学信号转变为神经元内电信号,最后将冲动传到神经中枢,调控昆虫的行为 (Vogt and Riddiford,1981;Hildebrand and Shepherd,1997;Brockmann et al.,1998;Steinbrecht,1998;王桂荣等,2001,2002)。Webster (2012)认为蚜虫在寄主定位过程中通过嗅觉感受植物挥发物以识别寄主及确认取食适合度。Zheng 等(2012)发现成熟的果蝇雄虫可以在0.5 h 内对甲基丁香酚(methyl eugenol,ME)表现出明显的趋性,同时触角中气味受体Orco 的表达量明显地上调。Sun 等(2012)通过GC-EAG和GC-MS 方法确定了烟草中的4种活性化合物,且含有这4种物质活性成分的混合物可引起烟夜蛾Helicoverpa assulta 在一定距离内的逆风趋向行为。
相比嗅觉机制,对昆虫味觉感受机制的研究较少(杨慧等,2008)。嗅觉感受器一般感受挥发性物质,而味觉感受器通过与植物体的直接接触来感知植物体所含的非挥发性物质的性质,最典型的特征是感受器顶端开口,神经元以不分枝的树突伸入其中,允许外界非挥发性物质从顶孔进入感觉腔内刺激受体神经元(Kvello et al.,2006)。感受器内味觉神经元中的味觉受体也属于G 蛋白偶联受体(Clyne et al.,2000),能够编码外界化学物质的刺激信息,Miyamoto 等(2012)在果蝇大脑神经元中发现一种味觉受体(Gr43a),其可作为营养感受器感受血淋巴中果糖含量,并促使饥饿果蝇取食或抑制饱食果蝇取食。
昆虫可通过味觉感受系统辨别促进取食的营养化合物和抑制取食的有毒化合物以确认和评估潜在食物(Miyamoto et al.,2012)。当昆虫接触到寄主植物时,其利用触角、跗足、口器、产卵器等部位上的接触性感受器对植物表面的形态结构和化学性质等进行评价。Renwikc and Chew(1994)认为,昆虫在叶面上的化学尝试主要是通过前足跗节在植物表面上的“触诊”(palpation)行为或在植物表面上的爬行,以保证其感觉器官与刺激剂及营养物质的充分接触。如烟草天蛾Manduca sexta 只有当味觉感受细胞接受足够的化学感受信息时才能形成专性取食行为,否则幼虫将是多食性的(del Campo and Renwick,2000;del Campo and Miles,2003);血红扇头蜱Rhipicephalus sanguineus 通过螯肢上的味觉感受器感受植物甾酮类物质 (Soares et al.,2012);步甲Anchomenus dorsalis 通过触角上的味觉受体神经元感觉蚜虫蜜露以搜捕蚜虫(Merivee et al.,2012)。
昆虫借视觉、嗅觉、味觉等感觉通道感受外界植物及环境所产生的刺激后产生动作电位,还需进一步传导至神经中枢引起神经冲动,对植物的取舍作出选择(彩万志等,2001)。关于取食的神经调节机制极其复杂,近年来神经肽在调节昆虫取食行为中的作用引起了众多研究者的兴趣。脊椎动物的神经肽Y (NPY)涉及很多生理过程,如取食、能量平衡、学习等(Benoit et al.,2008;Chee and Colmers,2008 ;Nguven et al.,2011),那么无脊椎动物中是否也存在相似功能的神经肽呢?已有研究表明作为NPY 的同源物神经肽F (NPF)在无脊椎动物中有着相似的作用 (Nässel and Wegener,2011),昆虫各种不同的取食行为特征亦受大脑神经肽的控制(Nässel and Homberg,2006;Xu et al.,2010),如果阻断对取食刺激物有反应的感受器的信号输入或者刺激特异性的抑制型感觉细胞,便可使取食行为受到抑制 (Dethier,1982),如 Wielendaele 等 (2013) 对沙漠Schistocerca gregaria 成虫注射trNPF 后其取食量增加,而用RNAi 技术沉默trNPF 基因后其取食量减少。类胰岛素肽(DILPs)和NPF 是两个进化上保守的神经信号系统,在果蝇幼虫取食反应的各个方面都至关重要(Lingo et al.,2007),Shen and Cai (2000)证明了果蝇NPF 是用于调节取食的感觉系统中不可缺少的一部分,从而为无脊椎动物神经肽Y 调节取食反应理论提供了有利证据。Wu等(2005)研究发现上调果蝇类胰岛素肽(DILPs)神经元中S6 激酶活性可以导致饥饿幼虫的饥饿反应减弱,相反降低S6 激酶活性会引起取食过的幼虫表现出活跃的觅食行为。
昆虫必须利用植物或其他动物所制成的有机物以取得生命活动过程所需要的能源,有没有所需的食物,关系到能不能在这个生境中生存的问题;存在的食物是否适合于这种昆虫的要求,又关系到这个生境中的种群数量的问题。从进化的角度讲,昆虫有发展高度敏感的嗅觉系统用以检测并定位赖以生存的寄主的选择压力(Bruce and Pickett,2011),而植物的进化压力在于避免植食性昆虫的伤害或者吸引传粉昆虫和天敌昆虫(Dicke and Baldwin,2010),因此植物可产生多种不同的挥发性物质影响昆虫的活动。如果在挥发性物质不能有效调节昆虫取食的情况下,寄主植物就可能通过长期的进化选择,产生有利于保护自己或有利于寄主植物种群扩散的性状,以调节昆虫的取食行为,这些性状包括植物的颜色、形状、大小等物理特性,因此,植物的物理和化学因素共同作用于昆虫取食过程中的寄主选择。
昆虫在识别寄主植物的过程中,寄主植物释放的挥发性信息化合物起着重要的通讯引导作用(杜家纬,2001),植物次生物质不仅影响昆虫交配、产卵等繁殖行为(Mitchell et al.,1990),还影响昆虫的取食行为(卢伟等,2007)。昆虫对寄主植物的识别是由于识别了植物气味的由一定组分、按照严格比例组成的化学指纹图(鲁玉杰和张孝羲,2001),如葱属植物挥发出的含硫化合物可作为葱蚜Neotoxoptera formosana 嗅觉定位寄主的线索(Hori,2007);辣椒提取物对烟草夜蛾成虫有明显的引诱作用(Mahroof and Phillips,2007);马尾松挥发出的萜类化合物可吸引日本松墨天牛Monochamus alternatus (Fan et al.,2007)。同时,植物也可产生大量的次生性化学物质,对前来取食的昆虫产生拒避或拒食作用(李欣和白素芬,2003),如马郁兰、薰衣草、薄荷、迷迭香等植物的精油对葱蓟马Thrips tabaci 有明显的拒食作用(Koschier et al.,2002);寄主次生化合物和硬度均可影响黑翅土白蚁Odontotermes formosanus 取食偏好(Kasseney et al.,2011);丁香、苦丁茶、赛赤楠、肉桂等7种植物精油对粉纹夜蛾Trichoplusia ni 产生拒食作用,且不同成分的人工混合优化可用于不同害虫的防控(Akhtar et al.,2012)。
昆虫复眼能够感知寄主的形状、运动状态以及周围环境的颜色和植物的物理特性,即植物表面、叶表结构、叶表蜡质等,并能够将这些物理信号与寄主及其与寄主相关的化学刺激信号联系起来。植物表面蜡质的物理结构和数量能够影响植食性昆虫的附着和移动,并可通过影响天敌对植食性害虫的捕食,从而间接影响植食性害虫的行为(王美芳等,2009)。Bodnaryk (1992)认为十字花科植物叶片表面蜡质是抵御叶甲取食的一个重要因素,它能影响叶甲的取食率和取食方式。Kasseney 等(2011)认为寄主的硬度影响黑翅土白蚁的取食,其偏好较软的木材;Markwick 等(2013)发现苹果褐卷蛾Epiphyas postvittana 偏好绿色叶子多于转基因红色叶子,而在黑暗条件下却没有此现象,说明颜色影响其寄主定位。Colares等(2013)通过选择性实验也发现小菜蛾Plutella xylostella 偏好绿色卷心菜多于红色卷心菜;Machial 等(2012)对加拿大本地的一种松树根颈象鼻虫Hylobius warreni 进行两年的寄主选择实验,发现其容易被树状轮廓的垂直塑料所吸引,说明寄主形状影响其定位行为。
相对而言,温度、湿度、光照、空气等环境因子仅单方面对昆虫产生影响,其对昆虫的影响是比较均匀的,且与昆虫种群大小无关,一般通过影响植物的代谢间接对昆虫的寄主选择产生作用(王晓伟等,2006)。Lawler 等(1996)认为昆虫的取食受CO2浓度的影响,CO2浓度升高主要通过影响植物的光合作用和呼吸作用改变植物营养组分,从而影响昆虫的取食行为。同时,昆虫的取食总量和取食速率又与温度密切相关(陈瑜和马春森,2010),Arab 等(2005)的研究表明两种白蚁Heterotermes tenuis 和Coptotermes gestroi 的觅食活动依赖于最低温度界限。气候变暖也影响昆虫取食,温度升高使植物C/N 比增加营养下降,昆虫需要多食以满足自身需要(Wilf et al.,1999;Wolf et al.,2008)。Santos 等(2010)的研究认为印缅乳白蚁Coptotermes gestroi 的取食行为与相对湿度、土壤湿度和降雨呈负相关,且环境因子影响其季节性的觅食活动。Chen and Poland 等(2009)研究表明白蜡窄吉丁Agrilus planipennis 始终偏好生长在阳光下的寄主树木。因此,环境因子能在一定程度上对昆虫的取食行为产生影响。
此外,昆虫自身先前经历(学习行为)也能影响其取食行为(Barron,2001),昆虫幼虫期和成虫期对寄主的取食经历可以改变该虫态取食和产卵的寄主偏嗜行为(王争艳等,2011),例如,烟草夜蛾若虫取食非寄主植物豇豆后可在短时间内表现出对豇豆的偏好性(de Boer,2004);杂食性斑潜蝇对寄主植物的取食经历影响其对寄主植物的偏好性(Radziute and Buda,2013)。
总体来讲,昆虫偏好营养丰富的寄主(Scheirs and De Bruyn,2002;West and Cunningham,2002),但寄主定位不是简单的由植物营养状况决定的(Courtney et al.,1989),除寄主植物理化因素、环境因素和昆虫自身学习经历外,寄主丰富度、成虫取食位点、幼虫活动、躲避天敌等因素也影响着昆虫的寄主选择(Ballabeni et al.,2001;Cunningham et al.,2001;Scheirs and De Bruyn,2002;West and Cunningham,2002;Cunningham and West,2008)。
长期以来,人类一直被化学农药带来的抗药性、环境污染等问题所困扰,寻找可持续的害虫防控措施已成为大家关注的焦点。近代农药的发展不再以“杀死”为唯一特征 (尚稚珍等,1999),从昆虫行为生理学的角度研究害虫取食行为调控机制开辟了害虫防治领域的新视角,特别是与取食行为相关的大量化学感受蛋白的发现与功能研究(刘金香等,2005)、取食行为的神经和激素调控的深入研究,都将为逐步揭开昆虫取食行为之谜提供扎实的基础,如Liu 等(2010)克隆了小菜蛾4种化学感受蛋白(CSP)基因,并发现PxylCSP1 能够结合非挥发性物质,从而可能影响寄主植物的确定;Zhang 等(2012)通过同源建模发现斜纹夜蛾CSP 对其识别拒食剂与产卵拒避剂闹羊花素-Ⅲ(rhodojaponin-Ⅲ)起重要作用,Dong 等(2013)研究了小菜蛾在闹羊花素-III 处理下的蛋白质组学水平的变化。但昆虫取食行为过程复杂,涉及机理繁多,仍然有太多的问题尚未解决。展望今后研究昆虫取食行为机制,可综合运用分子生物学、神经生物学等多学科手段,深入研究视觉、味觉、嗅觉、触觉等感觉机制,全面阐明其取食行为的神经机制、激素调控机制等;可利用RNA 干扰和转基因等手段,深入研究昆虫对取食化学信息的识别、接受、信号传递、加工处理以及导致的取食行为反应等;重点研究植物源取食行为忌避剂、拒食剂的活性成分、作用机制,结合基于作用靶标的高通量筛选,研究开发昆虫取食行为调控剂,实现对昆虫取食行为的有效调控,最终达到控制害虫和利用益虫的目的。这类措施针对性强,防治效果可观,而且对其它生物以及环境没有负面影响。可以预计,昆虫取食行为生理学将持续成为昆虫学研究热点,且有可能为害虫综合治理提供新思路。
References)
Akhtar Y,Pages E,Stevens A,et al.Effect of chemical complexity of essential oils on feeding deterrence in larvae of the cabbage looper[J].Physiological Entomology,2012,37 (1):81-91.
Arab A,Costa-leonardo AM,Casarin FE,et al.Foraging activity and demographic patterns of two termite species (Isoptera:Rhinotermitidae)living in urban landscapes in southeastern Brazil[J].European Journal of Entomology,2005,102:691-697.
Ballabeni P,Wlodarczyk M,Rahier M.Does enemy-free space for eggs contribute to a leaf beetle's oviposition preference for a nutritionally inferior host plant[J]?Functional Ecology,2001,15 (3):318-324.
Barron AB.The life and death of Hopkins'host-selection principle[J].Journal of Insect Behavior,2001,14 (6):725-737.http://www.sciencedirect.com/science/article/pii/S0261219401001247-AFFB#AFFB
Benoit SC,Tracy AL,Davis JF,et al.Novel functions of orexigenic hypothalamic peptides:from genes to behavior [J].Nutrition,2008,24 (9):843-847.
Bodnaryk RP.Leaf epicuticular wax,an antixenotic factor in Brassicaceae that affects the rate and pattern of feeding of flea beetles,Phyllotreta cruciferae (Goeze)[J].Canadian Journal of Plant Science,1992,72 (4):1295-1303.
Brockmann A,Brueckner D,Crewe RM.The EAG response of workers and drones to queen honeybee mandibular gland components:the evolution of a social signal [J].Naturwissenschaften,1998,85(6):283-285.
Bruce TJA,Pickett JA.Perception of plant volatile blends by herbivorous insects-Finding the right mix [J].Phytochemistry,2011,72(13):1605-1611.
Butkewich SL,Prokopy RJ.Attraction of adult plum curculios(Coleoptera:Curculionidae)to host-tree odor and visual stimuli in the field[J].Journal of Entomological Science,1997,32 (1):1-6.
Cai WZ,Pang XF,Huang BZ,et al.General Entomology[M].2001,Beijing:China Agricultural University Press.[彩万志,庞雄飞,花保祯,等.普通昆虫学[M].2001,北京:中国农业大学出版社]
Chee MJ,William F.Yeat[J].Nutrition,2008,24 (9):869-877.
Chen Y,Ma CS.Effect of global warming on insect:a literature review[J].Acta Ecologica Sinica,2010,30 (8):2159-2192.[陈瑜,马春森.气候变暖对昆虫影响研究进展[J].生态学报,2010,30 (8):2159-2192]
Chen YG,Poland TM.Biotic and abiotic factors affect green ash volatile production and emerald ash borer adult feeding preference [J].Environmental Entomology,2009,38 (6):1756-1764.
Clyne PJ,Warr CG,Carlson JR.Candidate taste receptors in Drosophila[J].Science,2000,287:1830-1834.
Colares F,Silva-Torres CSA,Torres JB,et al.Influence of cabbage resistance and colour upon the diamondback moth and its parasitoid Oomyzus sokolowskii [J].Entomologia Experimentalis et Applicata,2013,148 (1):84-93.
Courtney SP,Chen GK,Gardner A.A general model for individual host selection[J].OIKOS,1989,55 (1):55-65.
Cunningham JP,West SA.How host plant variability influences the advantages to learning:A theoretical model for oviposition behaviour in Lepidoptera [J].Journal of Theoretical Biology,2008,251(3):404-410.
Cunningham JP,West SA,Zalucki MP.Host selection in phytophagous insects:a new explanation for learning in adults [J].OIKOS,2001,95 (3):537-543.
De Boer G.Temporal and developmental aspects of diet-induced food preferences in larvae of the tobacco hornworm,Manduca sexta[J].Entomologia Experimentalis et Applicata,2004,35 (2):177-193.
De Groot P,Nott R.Evaluation of traps of six different designs to capture pine sawyer beetles (Coleoptera:Cerambycidae)[J].Agricultural and Forest Entomology,2001,3 (2):107-111.
del Campo ML,Miles CI.Chemosensory tuning to a host recognition cue in the facultative specialist larvae of the moth Manduca sexta[J].Journal of Experimental Biology,2003,206:3979-3990.
del Campo ML,Renwick JAA.Induction of host specificity in larvae of Manduca sexta:chemical dependence controlling host recognition and developmental rate[J].Chemoecology,2000,10 (3):115-121.
Dethier VG.Mechanism of host-plant recognition [J].Entomologia Experimentalis et Applicata,1982,31 (1):49-56.
Dicke M,Baldwin IT.The evolutionary context for herbivore-induced plant volatiles:beyond the‘cry for help’[J].Trends in Plant Science,2010,15 (3):167-175.
Dommer DH,Gazallo PJ,Painter MS,et al.Magnetic compass orientation by larval Drosophila melanogaster [J].Journal of Insect Physiology.2008,54 (4):719-726.
Dong XL,Zhai YF,Hu MY,et al.Proteomic and properties analysis of botanical insecticide rhodojaponin III-induced response of the diamondback moth,Plutella xyllostella (L.)[J].PLoS ONE,2013,8 (7):e67723.
Du JW.Plant-insect chemical communication and its behavior control[J].Acta Phytophysiologica Sinica,2001,27 (3):193-200.[杜家纬.植物-昆虫间的化学通讯及其行为控制[J].植物生理学报,2001,27 (3):193-200]
Dus M,Min S,Keene AC,et al.Taste-independent detection of the caloric content of sugar in Drosophila [J].PNAS,2011,108(28):11644-11649.
Fan JT,Sun JH,Shi J.Attraction of the Japanese pine sawyer,Monochamus alternatus,to volatiles from stressed host in China[J].Annals of Forest Science,2007,64 (1):67-71.
Farkas SR,Shorey HH.Chemical trail-following by flying insects:a mechanism for orientation to a distant odor source [J].Science,1972,178 (4056):67-68.
Flores GB,Lazzari CR.The role of the antennae in Triatoma infestans:orientation towards thermal sources [J].Journal of Insect Physiology,1996,42 (5):433-440.
Gao YB,Zhai BP.Progress in the mechanism of insect orientation[J].Chinese Bulletin of Entomology,2010,47 (6):1055-1065.[高月波,翟保平.昆虫定向机制研究进展[J].昆虫知识,2010,47 (6):1055-1065]
Hildebrand JG,Shepherd GM.Mechanisms of olfactory discrimination:converging evidence for common principles across phyla [J].Annual Review of Neuroscience,1997,20:595-631.
Hori M.Onion aphid (Neotoxoptera formosana)attractants,in the headspace of Allium fistulosum and A.tuberosum leaves [J].Journal of Applied Entomology,2007,131 (1):8-12.
Jander R.Insect orientation[J].Annual Review of Entomology,1963,8:95-114.
Kasseney BD,Deng TF,Mo JC.Effect of wood hardness and secondary compounds on feeding preference of Odontotermes formosanus(Isoptera:Termitidae)[J].Journal of Economic Entomology,2011,104 (3):862-867.
Koschier EH,Sedy KA,Novak J.Influence of plant volatiles on feeding damage caused by the onion thrips Thrips tabaci [J].Crop Protection,2002,21 (5):419-425.
Kvello P,Almaas TJ,Mustaparta H.A confined taste area in a lepidopteran brain[J].Arthropod Structure & Development,2006,35 (1):35-45.
Lawler IR,Foley WJ,Woodrow IE,et al.The effects of elevated CO2atmospheres on the nutritional quality of Eucalyptus foliage and its interaction with soil nutrient and light availability[J].Oecologia,1996,109 (1):59-68.
Li X,Bai SF.Advances in the studies on the chemical ecology of tritrophic interactions among host-plant,herbivore and natural enemies[J].Journal of Henan Agricultural University,2003,37(3):224-232.[李欣,白素芬.寄主植物-植食性昆虫-天敌三重营养关系中化学生态学的研究进展[J].河南农业大学学报,2003,37 (3):224-232]
Lingo PR,Zhao Z,Shen P.Co-regulation of cold-resistant food acquisition by insulin-and neuropeptide Y-like systems in Drosophila melanogaster[J].Neuroscience,2007,148 (2):371-374.
Liu JX,Zhong GH,Xie JJ,et al.Recent advances in chemosensory protein of insect[J].Acta Entomologica Sinica,2005,48 (3):418-426.[刘金香,钟国华,谢建军,等.昆虫化学感受蛋白研究进展[J].昆虫学报,2005,48 (3):418-426]
Liu XL,Luo Q,Zhong GH,et al.Molecular characterization and expression pattern of four chemosensory proteins from diamondback moth,Plutella xylostella (Lepidoptera:Plutellidae)[J].The Journal of Biochemistry,2010,148 (2):189-200.
Lu W,Hou ML,Wen JH,et al.Effects of plant volatiles on herbivorous insects[J].Plant Protection,2007,33 (3):7-11.[卢伟,侯茂林,文吉辉,等.植物挥发性次生物质对植食性昆虫的影响[J].植物保护,2007,33 (3):7-11]
Lu YH,Zhang YJ,Wu KM.Host-plant selection mechanisms and behavioural manipulation strategies of phytophagous insects [J].Acta Ecologica Sinica,2008,28 (10):5113-5122.[陆宴辉,张永军,吴孔明.植食性昆虫的寄主选择机理及行为调控策略[J].生态学报,2008,28 (10):5113-5122]
Lu YJ,Zhang XX.Effect of infochemicals on insect behavior [J].Entomological Knowledge,2001,38 (4):262-266.[鲁玉杰,张孝羲.信息化合物对昆虫行为的影响[J].昆虫知识,2001,38 (4):262-266]
Machial LA,Lindgren BS,Aukema BH.The role of vision in the host orientation behaviour of Hylobius warreni [J].Agricultural and Forest Entomology,2012,14 (3):286-294.
Mahroof RM,Phillips TW.Orientation of the cigarette beetle,Lasioderma serricorne (F)(Coleoptera:Anobiidae)to plant-derived volatiles [J].Journal of Insect Behavior,2007,20 (1):99-115.
Markwick NP,Poulton J,Espley RV,et al.Red-foliaged apples affect the establishment,growth,and development of the light brown apple moth,Epiphyas postvittana [J].Entomologia Experimentalis et Applicata,2013,146 (2):261-275.
Matthews RW,Matthews JR.Foraging and feeding.In:http://images.springer.com/covers/978-90-481-2388-9.tif Insect Behavior (2nd Edition)[M].Published by Springer Netherlands,2010,131-184.
McIntosh RL,Katinic PJ,Allison JD,et al.Comparative efficacy of five types of trap for woodborers in the Cerambycidae,Buprestidae and Siricidae[J].Agricultural and Forest Entomology,2001,3 (2):113-120.
Merivee E,Must A,Tooming E,et al.Sensitivity of antennal gustatory receptor neurones to aphid honeydew sugars in the carabid Anchomenus dorsalis [J].Physiological Entomology,2012,37(4):369-378.
Mitchell ER,Tingle FC,Heath RR.Ovipostional responses of three Heliothis species (Lepidoptera:Noctuidae)to allelochemicals from cultivated and wild host plants[J].Journal of Chemical Ecology,1990,16 (6):1817-1827.
Miyamoto T,Slone J,Song XY,et al.A fructose receptor functions as a nutrient sensor in the Drosophila brain[J].Cell,2012,151 (5):1113-1125.
Morewood WD,Hein KE,Katinic PJ,et al.An improved trap for large wood-boring insects,with special reference to Monochamus scutellatus (Coleoptera:Cerambycidae)[J].Canadian Journal of Forest Research,2002,32 (3):519-525.
Nässel DR,Homberg U.Neuropeptides in interneurons of the insect brain[J].Cell and Tissue Research,2006,326 (1):1-24.
Nässel DR,Wegener C.A comparative review of short and long neuropeptide F signaling in invertebrates:any similarities to vertebrate neuropeptide Y signaling[J]?Peptides,2011,32 (6):1335-1355 .
Nguyen AD,Herzog H,SainsburyA.Neuropeptide Y and peptide YY:important regulators of energy metabolism[J].Current Opinion in Endocrinology,Diabetes & Obesity,2011,18 (1):56-60.
Phillips JB,Jorge PE,Muheim R.Light-dependent magnetic compass orientation in amphibians and insects:candidate receptors and candidate molecular mechanisms[J].Journal of the Royal Society Interface,2010,7 (s2):S241-S256.
Poulet JFA,Hedwig B.Auditory orientation in crickets:pattern recognition controls reactive steering [J].PNAS,2005,102(43):15665-15669.
Radziute S,Buda V.Host feeding experience affects host plant odour preference of the polyphagous leafminer Liriomyza bryoniae [J].Entomologia Experimentalis et Applicata,2013,146 (2):286-292.
Reeves JL.Vision should not be overlooked as an important sensory modality for finding host plants[J].Environmental Entomology,2011,40 (4),855-863.
Renwikc JA,Chew FS.Oviposition behavior in Lepidoptera [J].Annual Review of Entomology,1994,39:337-400.
Santos MN,Teixeira MLF,Pereira MB,et al.Environmental factors influencing the foraging and feeding behavior of two termite species(Isoptera:Rhinotermitidae)in natural habitats[J].Sociobiology,2010,55 (3):763-778.
Scheirs J,De Bruyn L.Integrating optimal foraging and optimal oviposition theory in plant– insect research[J].OIKOS,2002,96 (1):187-191.
Shang ZZ,Xu JH,Su SZ.Studies on antifeeding mechanism and electrophysiological method as bioassay model with larval of Ostrinia furnacalis Guenee[J].Chinese Journal of Pesticide Science,1999,1 (2):25-30.[尚稚珍,徐建华,苏胜忠.害虫拒食行为调控物质的筛选模型研究[J].农药学学报,1999,1 (2):25-30]
Shen P,Cai HN.Drosophila neuropeptide F mediates integration of chemosensory stimulation and conditioning of the nervous system by food[J].Journal of Neurobiology,2000,47 (1):16-25.
Soares SF,Louly CCB,Neves CA,et al.Detection of phytoecdysteroids by gustatory sensilla on chelicerae of the brown dog tick Rhipicephalus sanguineus[J].Physiological Entomology,2012,37(3):241-249.
Steinbrecht RA.Are odorant-binding proteins involved in odorant discrimination[J]?Chemical Senses,1998,21 (6):719-727.
Sun JG,HuangLQ,Wang CZ.Electrophysiological and behavioral responses of Helicoverpa assulta (Lepidoptera:Noctuidae) to tobacco volatiles [J].Arthropod-Plant Interactions,2012,6(3):375-384.
Tilden PE,Bedard WD,Lindahl KQ,et al.Trapping Dendroctonus brevicomis:Changes in attractant release rate,dispersion of attractant,and silhouette[J].Journal of Chemical Ecology,1983,9 (3):311-321.
Tobin TR.Pheromone orientation:role of internal control mechanism[J].Science,1981,214 (4525):1147-1149.
Vogt RG,Riddifor LM.Pheromone binding and inactivation by moth antennae[J].Nature,1981,293:161-163.
Vuts J,Kaydan MB,Yarimbatman A,et al.Field catches of Oxythyrea cinctella using visual and olfactory cues [J].Physiological Entomology,2012,37 (1):92-96.
Wang GR,Guo YY,Wu KM.Progress in the studies of antenna odorant binding proteins of insects[J].Acta Entomologica Sinica,2002,45 (1):131-137.[王桂荣,郭予元,吴孔明.昆虫触角气味结合蛋白的研究进展[J].昆虫学报,2002,45 (1):131-137]
Wang GR,Guo YY,Xu G,et al.Cloning and sequencing of a gene encoding GOBP2 in the antenna of spodoptera exigua[J].Scientia Agricultura Sinica,2001,34 (6):619-625.[王桂荣,郭予元,徐广,等.甜菜夜蛾GOBP2 基因的克隆及序列测定[J].中国农业科学,2001,34 (6):619-625]
Wang MF,Chen JL,Yuan GH,et al.Effects of plant epicuticular waxes on phytophagous insects behaviour [J].Ecology and Environmental Sciences,2009,18 (3):1155-1160.[王美芳,陈巨莲,原国辉,等.植物表面蜡质对植食性昆虫的影响研究进展[J].生态环境学报,2009,18 (3):1155-1160]
Wang XW,Ji LZ,Wang GQ,et al.Potential effects of elevated carbon dioxide on forest leaf-feeding insects [J].Chinese Journal of Applied Ecology,2006,17 (4):720-726.[王晓伟,姬兰柱,王桂清,等.大气CO2浓度升高对森林食叶昆虫的潜在影响[J].应用生态学报,2006,17 (4):720-726]
Wang ZY,Li XT,Lu YJ,et al.Principles of host-selection evolution in insects[J].Chinese Journal of Applied Entomology,2011,48(1):174-177.[王争艳,李心田,鲁玉杰,等.昆虫寄主选择行为的进化机制[J].应用昆虫学报,2011,48 (1):174-177]
Webster B.The role of olfaction in aphid host location [J].Physiological Entomology,2012,37 (1):10-18.
Weinandt ML,Meyer M,Strand M,et al.Cues used by the black fly,Simulium annulus,for attraction to the common loon (Gavia immer)[J].Journal of Vector Ecology,2012,37 (2):359-364.
West SA,Cunningham JP.A general model for host plant selection in phytophagous insects[J].Journal of Theoretical Biology,2002,214 (3):499-513.
Wielendaele PV,Dillen S,Zels S,et al.Regulation of feeding by Neuropeptide F in the desert locust,Schistocerca gregaria [J].Insect Biochemistry and Molecular Biology,2013,43 (1):102-114.
Wilf P,Labandeira CC.Response of plant-insect associations to Paleocene-eocene warming [J].Science,1999,284 (5423):2153-2156.
Wolf A,Kozlov MV,Callaghan TV.Impact of non-outbreak insect damage on vegetation in northern Europe will be greater than expected during a changing climate[J].Climatic Change,2008,87 (1/2):91-106.
Wu Q,Zhang Y,Xu J,et al.Regulation of hunger-driven behaviors by neural ribosomal S6 kinase in Drosophila [J].PNAS,2005,102 (37):13289-13294.
Wyatt TD,Vastiau K,Birch M.Orientation of flying male Anobium punctatum (Coleoptera:Anobiidae)to sex pheromone:separating effects of visual stimuli and physical barriers to wind [J].Physiological Entomology,1997,22 (2):191-196.
Xu J,Li M,Shen P.A G-protein-coupled neuropeptide Y-like receptor suppresses behavioral and sensory response to multiple stressful stimuli in Drosophila[J].The Journal of Neuroscience,2010,30 (7):2504-2512.
Yang H,Yan SC,Peng L.Chemosensilla and chemical sensory mechanisms in Lepidoptera[J].Acta Entomologica Sinica,2008,51 (2):204-215.[杨慧,严善春,彭璐.鳞翅目昆虫化学感受器及其感受机理新进展[J].昆虫学报,2008,51 (2):204-215]
Zhang YB,Dong XL,Liu JX,et al.Molecular cloning,expression and molecular modeling of chemosensory protein from Spodoptera litura and its binding properties with Rhodojaponin III[J].PLoS ONE,2012,7 (10):e47611.
Zheng WW,Zhu CP,Peng T,et al.Odorant receptor coreceptor Orco is upregulated by methyl eugenol in male Bactrocera dorsalis (Diptera:Tephritidae)[J].Journal of Insect Physiology,2012,58 (8):1122-1127.
Zhou TM,Chen JQ,Zhang PF,et al.The influence of four kinds of plant aqueous extracts on the feeding behaviors of Aphids gossypii[J].Journal of Plant Protection,2004,31 (3):252-258.[周天牧,陈建群,张鹏飞,等.4种抗虫性植物水提物对棉蚜取食行为的影响[J].植物保护学报,2004,31 (3):252-258]