Apelin—13对局灶性脑缺血—再灌注损伤大鼠脑组织脑源性神经营养因子及受体表达的影响

2014-02-21 16:41李亮龙俊王知非
中国医药导报 2014年4期
关键词:对局灶性局灶

李亮+龙俊+++++王知非

[摘要] 目的 观察Apelin-13对局灶性脑缺血-再灌注损伤大鼠缺血区皮层脑源性神经营养因子(BDNF)和及其受体酪氨酸激酶B(TrkB)表达的影响。 方法 采用线栓法建立大鼠大脑中动脉缺血-再灌注损伤模型。SD雄性大鼠随机分为假手术组、模型组和Apelin-13(0.1、1.0和10.0 μg/kg)处理组。缺血-再灌注损伤大鼠在缺血2 h后再灌注24 h,Apelin-13在再灌注前15 min进行侧脑室注射。采用实时定量PCR和Western blot检测BDNF和TrkB mRNA和蛋白的表达。结果 与假手术组比较,模型组大鼠脑梗死侧皮层BDNF和TrkB mRNA和蛋白的表达显著性增加,BDNF mRNA相对表达量分别为(100.00±0.00)%和(138.54±7.63)%;TrkB mRNA相对表达量分别为(100.00±0.00)%和(121.74±8.73)%。BDNF 蛋白相对表达量分别为(0.25±0.04)和(0.38±0.05);TrkB蛋白相对表达量分别为(0.23±0.03)和(0.36±0.04),差异均有统计学意义(t=9.45、10.79、10.37、8.76,均P < 0.05)。与模型组比较,1.0和10.0 μg/kg Apelin-13处理组大鼠脑梗死侧皮层BDNF和TrkB的表达均显著性增加,BDNF mRNA相对表达量分别为(138.54±7.63)%、(158.69±11.37)%和(189.31±13.74)%;TrkB mRNA相对表达量分别为(121.74±8.73)%、(149.25±9.46)%和(166.41±13.74)%。BDNF 蛋白相对表达量分别为(0.38±0.05)、(0.57±0.06)和(0.71±0.08);TrkB蛋白相对表达量分别为(0.36±0.04)、(0.51±0.07)和(0.68±0.07),呈浓度依赖性,差异均有统计学意义(F=8.84、11.12、9.72、10.48,均P < 0.05)。 结论 Apelin-13对大鼠局灶性脑缺血-再灌注损伤有保护作用,其机制可能与上调BDNF及受体TrkB的表达有关。

[关键词] Apelin-13;脑缺血-再灌注损伤;脑源性神经生长因子;酪氨酸激酶B

[中图分类号] R743.33 [文献标识码] A [文章编号] 1673-7210(2014)02(a)-0021-05

Effect of Apelin-13 on the expression of brain-derived neurotrophic factor and tyrosine kinase B in the focal cerebral isehemia-reperfused injury rats

LI Liang1,2 LONG Jun1▲ WANG Zhifei1

1.Department of Neurosurgery, the Third Xiangya Hospital of Central South University, Hu′nan Province, Changsha 410013, China; 2.Department of Neurosurgery, the Central Hospital of Loudi City, Hu′nan Province, Loudi 417000, China

[Abstract] Objective To observe the effects of Apelin-13 on the expressions of brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) in the focal cerebral isehemia-reperfused rats. Methods The rats models of focal middle cerebral artery ischemia-reperfusion were established by filament in SD male rats. The rats were randomly divided into the sham, model and Apelin-13 (0.1, 1.0 and 10.0 μg/kg) treatment group. After 2 h ischemia, the focal middle cerebral artery was followed by 24 h reperfusion in rats with isehemia-reperfused injury. Apelin-13 was administrated by the intracerebroventricular injection 15 minutes before reperfusion. The mRNA and protein expressions of BDNF and TrkB in cerebral cortex were measured by real-time PCR and Western blot respectively. Results Compared with the sham group, the mRNA and protein expressions of BDNF and TrkB in cerebral cortex were significantly increased in the models of ischemia-reperfusion group, the relative mRNA expressions of BDNF were (100.00±0.00)% and (138.54±7.63)% respectively; the relative mRNA expressions of TrkB were (100.00±0.00)% and (121.74±8.73)% respectively. The relative protein expressions of BDNF were (0.25±0.04) and (0.38±0.05) respectively; the relative protein expressions of TrkB were (0.23±0.03) and (0.36±0.04) respectively, with significant differences (t=9.45, 10.79, 10.37, 8.76, all P < 0.05). Compared with the models of ischemia-reperfusion group, the mRNA and protein expressions of BDNF and TrkB in cerebral cortex were significantly increased in the 1.0 and 10.0 μg/kg Apelin-13 treatment group, the relative mRNA expressions of BDNF were (138.54±7.63)%, (158.69±11.37)% and (189.31±13.74)% respectively; the relative mRNA expressions of TrkB were (121.74±8.73)%, (149.25±9.46)% and (166.41±13.74)% respectively. The relative protein expressions of BDNF were (0.38±0.05), (0.57±0.06) and (0.71±0.08) respectively; the relative protein expressions of TrkB were (0.36±0.04), (0.51±0.07) and (0.68±0.07) respectively, with significant differences (F=8.84, F=11.12, F=9.72, F=10.48, all P < 0.05). Conclusion Apelin-13 protects the ischemia-reperfusion injury, the mechanism of which may be related with up-regulation of BDNF and TrkB.

[Key words] Apelin-13; Brain ischemia-reperfusion injury; Brain-derived neurotrophic factor; Tyrosine kinase B

脑血管疾病是神经系统的常见病之一,是导致死亡的重要原因之一。缺血性脑血管病占到脑血管疾病70%左右。脑缺血梗死后,再灌注会进一步加重脑损伤[1]。Apelin是近年来发现的一种具有神经保护作用的内源性多肽,在神经系统中有大量表达[2-3]。研究显示Apelin能对抗兴奋性毒性和氧化应激等对神经细胞的损伤以及抑制神经细胞的凋亡,也能保抑制心肌的缺血-再灌注损伤[4-6]。因此本研究拟观察Apelin-13对局灶性脑缺血-再灌注损伤大鼠缺血区皮层脑源性神经营养因子(brain derived neurotrophic factor,BDNF)和及其受体酪氨酸激酶B(tyrosine kinase B,TrkB)表达的影响,以探讨Apelin-13对脑缺血-再灌注损伤的保护机制。

1 材料与方法

1.1 材料

Apelin-13为美国Sigma公司产品。总RNA提取试剂盒、MMLV第一链cDNA合成试剂盒、DNA Marker和Hot Star Taq Master Mix试剂盒(Invitrogen公司)。引物由上海生物工程公司合成。BCA蛋白定量试剂(Pierce公司)。BDNF、TrkB和β-actin抗体以及辣根过氧化物酶标记二抗为美国Santa Cruz产品。

1.2 实验动物与分组

健康SPF级雄性SD大鼠50只,体质量250~300 g,由中南大学实验动物学部提供,以标准饲料喂养。将大鼠随机分为5组:假手术组(10只)、缺血再灌注组(10只)、不同剂量Apelin-13组(0.1、1.0、10.0 μg/kg,每组10只)。将Apelin-13溶解于生理盐水,配成不同浓度的溶液,在再灌注前15 min进行侧脑室微量注射,确保注射的Apelin-13溶解量为30 μL/kg。假手术组和缺血再灌注组给予相同剂量的生理盐水。

1.3 侧脑室微量注射

腹腔注射10%水合氯醛(300 mg/kg)麻醉大鼠后固定在脑立体定位仪上,根据L.J.Pellegrine鼠脑定向图谱在相当于侧脑室的颅骨部位,具体位置为大鼠矢状缝和冠状缝愈合处(前信)向后3~4 mm,中缝向右1~2 mm,深度为3 mm,钻孔埋入插管套管,使用牙托粉固定。将注射器插入固定套管尖端伸出套管外1 mm,每次注药3 min注完,并留针l min。

1.4 动物模型制备

在大鼠侧脑室埋管手术结束后,立即将大鼠仰卧固定于手术台上,采用线栓法制备大鼠大脑中动脉局灶性脑缺血模型。做颈部正中切口,分离出右侧颈总和颈内、外动脉,在动脉分叉处结扎颈外动脉,颈总动脉剪一小口,插入头端呈圆钝形的尼龙鱼线(直径0.28 mm),插入长度约18 mm,在大脑中动脉起始端堵塞动脉。将颈总动脉和尼龙鱼线一起结扎,缝合皮肤。在阻断血流2 h后,通过拔出尼龙鱼线实现再灌注24 h。假手术组只分离血管,不结扎动脉,不插入尼龙鱼线。大鼠苏醒后左侧肢体瘫痪,站立不稳,左上肢屈曲、行走时向左侧转圈的大鼠为造模成功,用于后续实验。

1.5 实时定量PCR检测

再灌注24 h后,断头处死大鼠后迅速取出大脑,选取梗死区皮层脑组织,进行组织匀浆,Trizol提取脑组织的总RNA。提取的总RNA为模板进行逆转录反应,合成cDNA第一链。取cDNA样品梯度稀释,进行实时定量PCR反应,反应总体系为30 μL,包含1 μL Taq DNA聚合酶(5 U/μL),4 μL cDNA,1 μL双链DNA特异性结合的荧光染料(SYBR Green 0NE)(50×),上下游引物各1 μL,8 μL dNTP Mix(2×),其余用蒸馏水补足。BDNF引物:上游:5′-TCC CTG GCT GAC ACT TTT GAG-3′,下游:5′- ATT GTG TAG ATC GGC ATT GCG-3′。TrkB引物:上游:5′-GCA CAC GCA CTC TCA CTG ACT GGC ACT-3′,下游:5′-GAG CGG GTC ACC CGC GAC GAT GCA GCT-3′。β-actin引物:上游:5′-CGA TCA TCT TCC AGG AGC G-3′,下游:5′-CTT GCA GTG TGC TAT ACT CG-3′。采用2-△△CT法处理数据,以假手术组作为对照组,以对照组为100%对目的基因的mRNA表达进行分析。

1.6 Western blotting检测

提取梗死区皮层脑组织总蛋白,BAC法蛋白定量。100 μL样本加入到2×SDS凝胶加样缓冲液中煮沸。凝胶电泳1 h分离蛋白质,分离的蛋白转膜至聚偏氟乙稀膜上。10%脱脂牛奶封闭2 h,加入兔抗鼠BDNF、TrkB和β-actin一抗,4℃下过夜。加入羊抗兔二抗,孵育6 h。显影后进行半定量分析。

1.7 统计学方法

采用统计软件SPSS 17.0对实验数据进行分析,计量资料数据以均数±标准差(x±s)表示,用单因素方差分析进行统计分析,组间的两两比较采用LSD-t检验。计数资料以率表示,采用χ2检验。以P < 0.05为差异有统计学意义。

2 结果

2.1 Apelin-13对局灶性脑缺血再灌注损伤大鼠脑梗死侧皮层BDNF和TrkB mRNA表达的影响

与假手术组比较,局灶性脑缺血再灌注损伤模型组大鼠脑梗死侧皮层BDNF和TrkB mRNA表达显著性增加,BDNF mRNA相对表达量分别为(100.00±0.00)%和(138.54±7.63)%;TrkB mRNA相对表达量分别为(100.00±0.00)%和(121.74±8.73)%,差异均有统计学意义(t = 9.45、10.79,均P < 0.05)。与模型组比较,1.0和10.0 μg/kg Apelin-13处理组大鼠脑梗死侧皮层BDNF和TrkB mRNA表达均显著性增加,BDNF mRNA相对表达量分别为(138.54±7.63)%、(158.69±11.37)%和(189.31±13.74)%;TrkB mRNA相对表达量分别为(121.74±8.73)%、(149.25±9.46)%和(166.41±13.74)%,呈浓度依赖性,差异均有统计学意义(F=8.84、11.12,均P < 0.05)。见图1、2。

与假手术组比较,*P < 0.05;与模型组比较,#P < 0.05;与0.1 μg/kg组比较,▼P < 0.05;与1.0 μg/kg组比较,◆P < 0.05;BDNF:脑源性神经营养因子

图1 Apelin-13对局灶性脑缺血再灌注损伤大鼠脑梗死侧皮层BDNF mRNA表达的影响

与假手术组比较,*P < 0.05;与模型组比较,#P < 0.05;与0.1 μg/kg组比较,▼P < 0.05;与1.0 μg/kg组比较,◆P < 0.05;TrkB:酪氨酸激酶B 图2 Apelin-13对局灶性脑缺血再灌注损伤大鼠脑梗死侧皮层

脑源性神经营养因子的受体TrkB mRNA表达的影响

2.2 Apelin-13对局灶性脑缺血再灌注损伤大鼠脑梗死侧皮层BDNF和TrkB蛋白表达的影响

与假手术组比较,局灶性脑缺血再灌注损伤模型组大鼠脑梗死侧皮层BDNF和TrkB蛋白表达显著性增加,BDNF蛋白相对表达量分别为(0.25±0.04)和(0.38±0.05);TrkB蛋白相对表达量分别为(0.23±0.03)和(0.36±0.04),差异均有统计学意义(t=10.37、8.76,均P < 0.05)。与模型组比较,1.0和10.0 μg/kg Apelin-13处理组大鼠脑梗死侧皮层BDNF和TrkB蛋白表达均显著性增加,BDNF蛋白相对表达量分别为(0.38±0.05)、(0.57±0.06)和(0.71±0.08);TrkB蛋白相对表达量分别为(0.36±0.04)、(0.51±0.07)和(0.68±0.07),呈浓度依赖性,差异均有统计学意义(F=9.72、10.48,均P < 0.05)。见图3、4。

与假手术组比较,*P < 0.05;与模型组比较,#P < 0.05;与0.1 μg/kg组比较,▼P < 0.05;与1.0 μg/kg组比较,◆P < 0.05;BDNF:脑源性神经营养因子

图3 Apelin-13对局灶性脑缺血再灌注损伤大鼠脑梗死侧皮层BDNF蛋白表达的影响

与假手术组比较,*P < 0.05;与模型组比较,#P < 0.05;与0.1 μg/kg组比较,▼P < 0.05;与1.0 μg/kg组比较,◆P < 0.05;TrkB:酪氨酸激酶B 图4 Apelin-13对局灶性脑缺血再灌注损伤大鼠脑梗死侧皮层

脑源性神经营养因子的受体TrkB蛋白表达的影响

3 讨论

冠状动脉硬化导致的心肌梗死、脑卒中等缺血损伤所引的组织损伤是导致死亡的主要原因。研究表明缺血组织血液供应恢复后,对组织造成损伤反而加重,这种损伤称为缺血-再灌注损伤。缺血-再灌注损伤的机制十分复杂,其中过量自由基的产生是一个重要的原因[7]。

神经营养因子是一种对神经组织起特殊营养作用的蛋白质或多肽分子。它们可调节神经细胞的生长分化,调节神经细胞的代谢和生理功能。BDNF是由中枢神经系统的神经元和星形胶质细胞产生,在脑内发布最为广泛的一种神经营养因子[8]。BDNF能调节交感、运动和感觉神经元的分化和增殖,防止神经细胞的退行性病变,抑制神经细胞的凋亡。BDNF保护神经细胞的机制包括上调钙结合蛋白表达,维持细胞内正常Ca2+浓度,防止细胞内钙超载;抑制NMDA受体功能,抑制兴奋性氨基酸毒性;增加超氧化物岐化酶和谷胱甘肽过氧化物酶等的水平,清除自由基,保护神经元免受自由基的攻击;抑制神经细胞凋亡等[9-10]。在缺血损伤早期,BDNF及其受体TrkB表达均上调。TrkB表达的上调,BDNF通过激活TrkB受体,防止神经元发生变性、坏死,发挥神经细胞保护的作用[11]。

Apelin是在1998年由Tatemoto等通过反向药理学方法从牛胃的分泌物中分离纯化的一种小分子内源性神经肽,是G蛋白耦联受体血管紧张素受体AT1相关的受体蛋白(putative receptor protein related to the angiotensinreceptor AT1,APJ)的天然配体[12]。Apelin/APJ在神经系统广泛分布,研究表明Apelin/APJ具有神经保护作用,能对抗兴奋性毒性损伤、氧化应激损伤,抑制神经细胞的凋亡等,是一种内源性神经保护因子。研究发现海马细胞中有APJ和Aelin的表达,Apelin-13能诱导Akt和Raf/ERK1/2的磷酸化,对抗N-甲基-D-门冬氨酸(N-methyl-D-aspartic acid,NMDA)对海马神经元的兴奋性毒性损伤[13]。Apelin-13可通过活化三磷酸肌醇IP3、PKC、MEK1/2和ERK1/2调节NMDA受体的NR2B亚单位的1480丝氨酸磷酸化,减少Ca2+积聚,以及降低钙蛋白酶calpain的活化,保护大脑皮质神经元抵抗谷氨酸的兴奋性毒性损伤[14]。Apelin能抑制大脑皮质细胞中活性氧的产生、线粒体膜电位去极化、细胞色素C的释放以及caspase-3的激活,促进Akt和ERKl/2的磷酸化,抑制细胞凋亡[15-16]。

Apelin前体肽在蛋白水解酶的作用下可分解为长度不同的多肽片段,主要有Apelin-36、Apelin-17、Apelin-13和Apelin-12等片段。不同长度的Apelin多肽片段在体内的分布以及与APJ的结合能力都不相同,在体内外发挥的生理与药理作用也不尽相同,其中Apelin-13在神经系统的表达水平较高,与神经系统的关系密切。本实验结果显示Apelin-13上调了脑缺血再灌注损伤大鼠脑内BDNF及其受体TrkB表达,提示Apelin-13可能通过增加神经营养因子的表达而发挥神经保护作用。BDNF和TrkB表达调控的机制十分复杂,Apelin-13上调BDNF和TrkB表达涉及到哪些信号通路还有待进一步研究。

总之,本研究阐明Apelin-13对大鼠局灶性脑缺血-再灌注损伤有保护作用,其机制可能与上调BDNF及受体TrkB的表达有关。

[参考文献]

[1] Tao T,Liu Y,Zhang J,et al. Therapeutic hypercapnia improves functional recovery and attenuates injury via antiapoptotic mechanisms in a rat focal cerebral ischemia/reperfusion model [J]. Brain Res,2013,1533(1):52-62.

[2] Khaksari M,Aboutaleb N,Nasirinezhad F,et al. Apelin-13 protects the brain against ischemic reperfusion injury and cerebral edema in a transient model of focal cerebral ischemia [J]. J Mol Neurosci,2012,48(1):201-208.

[3] Gu Q,Zhai L,Feng X,et al. Apelin-36,a potent peptide, protects against ischemic brain injury by activating the PI3K/Akt pathway [J]. Neurochem Int,2013,186(13):245-243.

[4] Foussal C,Lairez O,Calise D,et al. Activation of catalase by Apelin prevents oxidative stress-linked cardiac hypertrophy [J]. FEBS Lett,2010,584(11):2363-2370.

[5] Cook DR,Gleichman AJ,Cross SA,et al. NMDA receptor modulation by the neuropeptide Apelin: implications for excitotoxic injury [J]. J Neurochem,2011,118(6):1113-1123.

[6] Tao J,Zhu W,Li Y,et al. Apelin protects the heart against ischemia-reperfusion injury through inhibition of ER-dependent apoptotic pathways in a time-dependent fashion [J]. Am J Physiol Heart Circ Physiol,2011,301(4):H1471-1486.

[7] Jaeschke H,Woolbright BL. Current strategies to minimize hepatic ischemia-reperfusion injury by targeting reactive oxygen species [J]. Transplant Rev (Orlando),2012,26(2):103-114.

[8] Nurjono M,Lee J,Chong SA. A Review of Brain-derived Neurotrophic Factor as a Candidate Biomarker in Schizophrenia [J]. Clin Psychopharmacol Neurosci,2012,10(2):61-70.

[9] 李昕,王建平,卢宏,等.黄体酮对大鼠局灶性脑缺血再灌注损伤后脑组织神经生长因子表达的影响[J].中国老年医学杂志,2012,31(7):615-618.

[10] Lidian A,Stenkvist AM,Linder B,et al. Early hearing protection by brain-derived neurotrophic factor [J]. Acta Otolaryngol,2013,133(1):12-21.

[11] Chuang CM,Hsieh CL,Lin HY,et al. Panax Notoginseng Burk attenuates impairment of learning and memory functions and increases ED1,BDNF and beta-secretase immunoreactive cells in chronic stage ischemia-reperfusion injured rats [J]. Am J Chin Med,2008,36(4):685-693.

[12] O'Carroll AM,Lolait SJ,Harris LE,et al. The Apelin receptor APJ: journey from an orphan to a multifaceted regulator of homeostasis [J]. J Endocrinol,2013,219(1):R13-35.

[13] O'Donnell LA,Agrawal A,Sabnekar P,et al. Apelin,an endogenous neuronal peptide,protects hippocampal neurons against excitotoxic injury [J]. J Neurochem,2007,102(6):1905-1917.

[14] Cook DR,Gleichman AJ,Cross SA,et al. NMDA receptor modulation by the neuropeptide Apelin: implications for excitotoxic injury [J]. J Neurochem,2011,118(6):1113-1123.

[15] Zeng XJ,Yu SP,Zhang L,et al. Neuroprotective effect of the endogenous neural peptide Apelin in cultured mouse cortical neurons [J]. Exp Cell Res,2010,316(11):1773-1783.

[16] 武菲,张秋玲.Apelin/APJ系统的神经保护作用及其机制[J].生理科学进展,2013,44(1):39-43.

(收稿日期:2013-11-02 本文编辑:卫 轲)

总之,本研究阐明Apelin-13对大鼠局灶性脑缺血-再灌注损伤有保护作用,其机制可能与上调BDNF及受体TrkB的表达有关。

[参考文献]

[1] Tao T,Liu Y,Zhang J,et al. Therapeutic hypercapnia improves functional recovery and attenuates injury via antiapoptotic mechanisms in a rat focal cerebral ischemia/reperfusion model [J]. Brain Res,2013,1533(1):52-62.

[2] Khaksari M,Aboutaleb N,Nasirinezhad F,et al. Apelin-13 protects the brain against ischemic reperfusion injury and cerebral edema in a transient model of focal cerebral ischemia [J]. J Mol Neurosci,2012,48(1):201-208.

[3] Gu Q,Zhai L,Feng X,et al. Apelin-36,a potent peptide, protects against ischemic brain injury by activating the PI3K/Akt pathway [J]. Neurochem Int,2013,186(13):245-243.

[4] Foussal C,Lairez O,Calise D,et al. Activation of catalase by Apelin prevents oxidative stress-linked cardiac hypertrophy [J]. FEBS Lett,2010,584(11):2363-2370.

[5] Cook DR,Gleichman AJ,Cross SA,et al. NMDA receptor modulation by the neuropeptide Apelin: implications for excitotoxic injury [J]. J Neurochem,2011,118(6):1113-1123.

[6] Tao J,Zhu W,Li Y,et al. Apelin protects the heart against ischemia-reperfusion injury through inhibition of ER-dependent apoptotic pathways in a time-dependent fashion [J]. Am J Physiol Heart Circ Physiol,2011,301(4):H1471-1486.

[7] Jaeschke H,Woolbright BL. Current strategies to minimize hepatic ischemia-reperfusion injury by targeting reactive oxygen species [J]. Transplant Rev (Orlando),2012,26(2):103-114.

[8] Nurjono M,Lee J,Chong SA. A Review of Brain-derived Neurotrophic Factor as a Candidate Biomarker in Schizophrenia [J]. Clin Psychopharmacol Neurosci,2012,10(2):61-70.

[9] 李昕,王建平,卢宏,等.黄体酮对大鼠局灶性脑缺血再灌注损伤后脑组织神经生长因子表达的影响[J].中国老年医学杂志,2012,31(7):615-618.

[10] Lidian A,Stenkvist AM,Linder B,et al. Early hearing protection by brain-derived neurotrophic factor [J]. Acta Otolaryngol,2013,133(1):12-21.

[11] Chuang CM,Hsieh CL,Lin HY,et al. Panax Notoginseng Burk attenuates impairment of learning and memory functions and increases ED1,BDNF and beta-secretase immunoreactive cells in chronic stage ischemia-reperfusion injured rats [J]. Am J Chin Med,2008,36(4):685-693.

[12] O'Carroll AM,Lolait SJ,Harris LE,et al. The Apelin receptor APJ: journey from an orphan to a multifaceted regulator of homeostasis [J]. J Endocrinol,2013,219(1):R13-35.

[13] O'Donnell LA,Agrawal A,Sabnekar P,et al. Apelin,an endogenous neuronal peptide,protects hippocampal neurons against excitotoxic injury [J]. J Neurochem,2007,102(6):1905-1917.

[14] Cook DR,Gleichman AJ,Cross SA,et al. NMDA receptor modulation by the neuropeptide Apelin: implications for excitotoxic injury [J]. J Neurochem,2011,118(6):1113-1123.

[15] Zeng XJ,Yu SP,Zhang L,et al. Neuroprotective effect of the endogenous neural peptide Apelin in cultured mouse cortical neurons [J]. Exp Cell Res,2010,316(11):1773-1783.

[16] 武菲,张秋玲.Apelin/APJ系统的神经保护作用及其机制[J].生理科学进展,2013,44(1):39-43.

(收稿日期:2013-11-02 本文编辑:卫 轲)

总之,本研究阐明Apelin-13对大鼠局灶性脑缺血-再灌注损伤有保护作用,其机制可能与上调BDNF及受体TrkB的表达有关。

[参考文献]

[1] Tao T,Liu Y,Zhang J,et al. Therapeutic hypercapnia improves functional recovery and attenuates injury via antiapoptotic mechanisms in a rat focal cerebral ischemia/reperfusion model [J]. Brain Res,2013,1533(1):52-62.

[2] Khaksari M,Aboutaleb N,Nasirinezhad F,et al. Apelin-13 protects the brain against ischemic reperfusion injury and cerebral edema in a transient model of focal cerebral ischemia [J]. J Mol Neurosci,2012,48(1):201-208.

[3] Gu Q,Zhai L,Feng X,et al. Apelin-36,a potent peptide, protects against ischemic brain injury by activating the PI3K/Akt pathway [J]. Neurochem Int,2013,186(13):245-243.

[4] Foussal C,Lairez O,Calise D,et al. Activation of catalase by Apelin prevents oxidative stress-linked cardiac hypertrophy [J]. FEBS Lett,2010,584(11):2363-2370.

[5] Cook DR,Gleichman AJ,Cross SA,et al. NMDA receptor modulation by the neuropeptide Apelin: implications for excitotoxic injury [J]. J Neurochem,2011,118(6):1113-1123.

[6] Tao J,Zhu W,Li Y,et al. Apelin protects the heart against ischemia-reperfusion injury through inhibition of ER-dependent apoptotic pathways in a time-dependent fashion [J]. Am J Physiol Heart Circ Physiol,2011,301(4):H1471-1486.

[7] Jaeschke H,Woolbright BL. Current strategies to minimize hepatic ischemia-reperfusion injury by targeting reactive oxygen species [J]. Transplant Rev (Orlando),2012,26(2):103-114.

[8] Nurjono M,Lee J,Chong SA. A Review of Brain-derived Neurotrophic Factor as a Candidate Biomarker in Schizophrenia [J]. Clin Psychopharmacol Neurosci,2012,10(2):61-70.

[9] 李昕,王建平,卢宏,等.黄体酮对大鼠局灶性脑缺血再灌注损伤后脑组织神经生长因子表达的影响[J].中国老年医学杂志,2012,31(7):615-618.

[10] Lidian A,Stenkvist AM,Linder B,et al. Early hearing protection by brain-derived neurotrophic factor [J]. Acta Otolaryngol,2013,133(1):12-21.

[11] Chuang CM,Hsieh CL,Lin HY,et al. Panax Notoginseng Burk attenuates impairment of learning and memory functions and increases ED1,BDNF and beta-secretase immunoreactive cells in chronic stage ischemia-reperfusion injured rats [J]. Am J Chin Med,2008,36(4):685-693.

[12] O'Carroll AM,Lolait SJ,Harris LE,et al. The Apelin receptor APJ: journey from an orphan to a multifaceted regulator of homeostasis [J]. J Endocrinol,2013,219(1):R13-35.

[13] O'Donnell LA,Agrawal A,Sabnekar P,et al. Apelin,an endogenous neuronal peptide,protects hippocampal neurons against excitotoxic injury [J]. J Neurochem,2007,102(6):1905-1917.

[14] Cook DR,Gleichman AJ,Cross SA,et al. NMDA receptor modulation by the neuropeptide Apelin: implications for excitotoxic injury [J]. J Neurochem,2011,118(6):1113-1123.

[15] Zeng XJ,Yu SP,Zhang L,et al. Neuroprotective effect of the endogenous neural peptide Apelin in cultured mouse cortical neurons [J]. Exp Cell Res,2010,316(11):1773-1783.

[16] 武菲,张秋玲.Apelin/APJ系统的神经保护作用及其机制[J].生理科学进展,2013,44(1):39-43.

(收稿日期:2013-11-02 本文编辑:卫 轲)

猜你喜欢
对局灶性局灶
18F-FDG PET/CT在结直肠偶发局灶性18F-FDG摄取增高灶诊断中的价值
肝脏局灶性结节增生的超声造影诊断表现
进行性多灶性白质脑病并文献复习
局灶性机化性肺炎与周围型肺癌MSCT鉴别诊断分析
肝脏多灶性结节状脂肪浸润的影像诊断与鉴别诊断
第29届欧洲象棋锦标赛对局选评
无灶性癫痫静息态功能MRI的功能连接研究
良性肝局灶性结节增生的手术治疗分析
赵国荣先胜吕钦
巨大肝脏局灶性结节增生1例报告