李艳芬 刘向东
摘 要:材料科学研究方法重点介绍了材料科学与工程学科的内在规律、材料的研发思路和各种研究方法。本门课程的开设拓展了材料学科专业领域的知识面,完善了知识结构,让学生实时了解材料学科研究的最新动态。
关键词:共性规律 先进材料 研究方法
人类社会文明发展的历程,是以材料为主要标志的。每一种材料的发现、发明和使用,都会把人类改造自然的能力提高到一个新的水平,把人类文明和社会发展推向一个新的台阶。而自然科学的各种研究方法在材料科学的发展中发挥了很大的作用,掌握材料学科的发展和研究方法对于材料学科研究人员和学生是非常必要的。认识材料科学与工程学科的内在科学规律和发展趋势,对材料的研究开发思路和各种方法有一个科学辩证的概念,能进一步激发学生的学习积极性和创新精神,为今后从事材料的设计和研究工作奠定基础。
一、材料的共性规律
材料主要分金属材料、无机非金属材料和有机高分子材料,三大材料都具有晶体结构,但是陶瓷和高分子材料的组织结构要比金属的复杂。由于它们的结合键不同,得金属具有较高的强度、刚度、导电、导热性能,无机非金属则具有耐高温、耐腐蚀、具有转变物理性能和脆性,有机高分子具有比强度高、耐磨、耐腐蚀、易老化、刚度小的特点。然而,它们在不同环境介质下有着共同的效应,例如界面效应,在界面处都有分割、不连续、吸热特征;还有材料的动态效应、复合效应、环境效应、纳米效应等。三大材料存在着共同规律,陶瓷的实际晶体中存在着各种缺陷,金属与合金存在同素异构转变、马氏体相变、有序——无序转变,在其他材料中也有这些转变。陶瓷中存在同素异构转变。对于有机固体相变的研究发现,许多由简单分子组成的有机固体也具有复杂的同素异构转变。在外力的作用下都会发生弹、塑性变形和断裂过程,而且它们应用相同力学性能测试技术,具有相似的规律。
二、材料科学发展的重点
材料科学发展的重点是(一)开发新材料,发展高技术产业;(二)纳米材料和纳米技术的开发。先进材料主要包括新能源材料、信息功能材料、生物材料、智能材料、功能复合材料和生态环境材料。
信息功能材料主要用于计算机、通信和控制,其特点是要求高、发展快、种类繁多。例如集成电路所需材料、计算机敏感元件传感器材料、新型半导体材料、存储介质材料和高温超导材料的开发和应用代表了信息功能材料的发展程度。生物材料又称为人造生物类材料,即类生物材料。类生物材料一般包括生物医用材料、仿生材料和生物灵性材料。生物医用材料已经成为人类非常关注的领域,生物仿生陶瓷、生物可降解高分子材料是医用生物材料的重要方向。仿生材料涉及面也很广,以往研究比较多的有珍珠、贝壳、竹子、骨骼、飞鸟等,仿生材料的更长远目标是使生物技术原理用于工业生产,改变高温、高压及耗能高的生产方式。
智能材料是一种能感知外部刺激,能够判断并适当处理且本身可执行的新型功能材料。如形状记忆材料、磁致伸缩材料、导电高分子材料、电流变液和磁流变液等智能材料驱动组件在航空上的应用已经取得了大量的创新成果。复合材料的内涵比较丰富,从复合的角度来说,未来的研究与发展重点是发展功能、智能复合材料,由于复合材料的设计自由度大,所以更适合发展多功能复合材料。功能复合材料涉及面比较广,包括电功能材料、磁功能材料、光功能材料、声功能材料、热功能材料、进行功能材料和化学功能材料。
生态环境材料定义是具有良好的使用性能和与环境协调性的材料。生态环境材料主要分为环境相容材料(包括纯天然材料、仿生物材料、绿色包装材料和生态建筑材料)、环境降解材料和环境工程材料(包括环境修复材料、环境净化材料和环境替代材料)。目前生态环境材料主要的研究方向有:生物可降解材料技术,CO2气体的固化技术,SOx、NOx等催化转化技术,废物的再资源化技术,环境污染修复技术、仿生材料、环境保护材料、氟里昂和石棉等有害物质的替代材料和绿色新材料等。
纳米材料及制备技术的开发迫在眉睫,当物质到纳米尺度时,其表面电子结构和晶体结构发生变化,产生了宏观物体不具备的小尺寸效应、量子效应、表面效应和界面效应。材料显示出奇特的物理、化学性能,利用这一效应可大幅度提高结构材料的强度,改善其脆性。纳米研究的主要领域包括金属、陶瓷、玻璃和聚合物方面的纳米材料,目前对纳米材料的应用研究热点主要集中在纳米管、纳米带、纳米薄膜、纳米复合材料和纳米金属材料等几个方面。纳米材料在使用中亟待解决的问题是纳米材料的设计和控制、制备技术与工艺。纳米材料在应用中有很多优点,但在使用和生产的过程中有可能使接触人员吸入纳米颗粒,造成对肺部的伤害,所以纳米材料在研究和应用过程中要考虑对健康、安全和环境的影响。
三、绿色材料科学技术
绿色材料科学技术从广义上来讲,包括的内容较多,例如积极开发新材料、新能源、材料的回收与再利用、改造传统工艺和生产流程等。发展绿色材料科学技术,很重要的措施是积极开发和采用新工艺、新技术,特别是传统材料产品产业。例如,粉末注射成型是制备各种金属和陶瓷高性能零件的高效、节能、环境友好、低成本、大批量生产的工艺,最近20年来发展十分迅速。
四、材料的基本研究方法
对于材料设计和研究采用的自然科学基本方法主要有归纳法、演绎法、分析法、综合法、类比法、移植法、黑箱法、相关法、数学方法、模型法、原型启发法等。
归纳法是从积累大量数据到概括出一般原理的过程,结果具有一定的可靠性,主要用于科学发现,这种方法的局限性是推理具有或然性。演绎法是由一般原理推论出个别结论的方法,可用于预见科学事实,是提出科学假说的重要方法。分析法与综合法相结合是科学发现和技术创新的重要途径。类比法和移植法可以将某一领域的方法和技术应用到其他学科技术领域中,比如螺旋桨技术用在飞机等领域,拉链技术应用在装饰、医学等多个领域。数学方法能揭示研究对象的本质特征和变化规律,是解决科学技术问题常用的也是最重要的方法,是表述系统的结构域行为的一种科学方法。例如谷神星的发现,是意大利科学家观察,高斯计算,被称为“铅笔尖”发现的新行星。原型启发法与仿生法是对自然现象和自然界的动植物进行观察、探索受到启发来进行科学研究和创造发明,例如美国佛罗里达州立大学工程师Rick Lind从海鸥身上得到启发,研制出一种能在高层建筑周围寻找出路,同时又可猛扑向林荫大道的远程遥控侦察机。日本新干线子弹头列车速度可达321公里/h,“取经”于猫头鹰羽毛和翠鸟喙的降噪设计,行驶过程出奇地安静。这是由于猫头鹰的羽毛呈锯齿状排列,可悄无声息地穿过夜空;列车的“鼻子”与翠鸟喙类似,这种形状可帮助列车在穿过隧道时不会产生低水平音爆。
研究材料的结构和性能之间的关系常常采用黑箱法、相关法、过程法和环境法。黑箱法是在无法知道研究对象本质机理的情况下采用的,相关法研究材料组织结构与性能之间有对应关系时采用,得到的关系式有一定的物理意义。过程法是研究对象的本质,又称为分析法,相关法和过程法是相辅相成的,环境法通过各种环境因素来研究材料组织性能的演化规律。
材料科学从经验科学走向理性科学,很重要的发展方向是材料研究的模型化与模拟。模型化是将真实情况简单化处理,建立一个反映真实情况本质特征的模型,并进行公式化描述。模拟是对真实事物或者过程的虚拟,模拟方法是把所求解问题转化为大量微观事件的情况下,提供一种数值解法。目前在国内外材料研究及加工领域中开展了很多模型化和模拟方面的研究工作,为进一步的实验工作提供了可靠的依据。
五、本课程开设的重要意义
这门课程除了具有完整的材料科学知识结构,精致的课件也使得学生在学习过程中受到视觉和听觉的冲击。在掌握理论知识同时,大量实例将理论和实践应用结合起来,引导学生如何去认识材料,去研究材料,去设计材料,让学生在学习过程中真切地体会到知识是如何学以致用的,并且激发他们对于这些知识探索的兴趣。对教师而言,在讲授这门课程的过程中,通过对材料设计、制备、研究方法内容的整合,个人的专业知识得到了极大的丰富,为今后研究方向的选题、方案的设计以及研究方法的应用提供了思路和参考。
参考文献:
[1]戴起勋,赵玉涛.材料科学研究方法(第2版).国防工业出版社,2008
[2]翁端,冉瑞,王蕾.环境材料学(第二版).清华大学出版社,2011
[3]肖纪美.材料学的方法论.冶金工业出版社,1994endprint