2 化归的思想方法
“化归”是转化和归结的简称。化归是数学研究问题的一般思想方法和解决问题的一种策略。在数学方法中所论及的“化归”方法是指数学家在解决问题的过程中,不是对问题进行直接攻击,而是把待解决的问题进行变形,转化,直接归结到一类已经能解决或者比较容易解决的问题中去,最终获得原问题解答的一种手段和方法。
但是如果问题较复杂,往往通过一次“化归”还不能解决问题,可连续地施行转化,直到归结为一个已经能解决或较易解决的问题,其“化归”的次数是随着问题的难易而定。
中学数学处处都体现出化归的思想,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想。在具体内容上,有加法与减法的转化,乘法与除法的转化,乘方与开方的转化,以及添加辅助线,增设辅助元等等都是实现转化的具体手段。因此,在教学中首先要让学生认识到,常用的很多数学方法实质上就是转化的方法,从而确信转化是可能的,而且是必须的。其次要结合具体教学内容进行有意识的训练,使学生掌握这一具有重大价值的思想方法。在具体教学过程中设出问题让学生去观察,探索转化的路子。例如在求解分式方程时,运用化归的方法,将分式方程转化为整式方程,进而求得分式方程的解,又如求解二元一次方程组时的“消元”,解一元二次方程时的“降次”都是化归的具体体现。
3 数形结合的思想方法
数学是研究现实世界的空间形式和数量关系的科学,也就是数与形。数与形是中学数学的主体,是中学数学论述的两大重要内容。数形结合的思想方法是指在研究某一对象时,既分析其代数意义,又揭示其几何意义,用代数方法分析图形,借助图形直观理解数、式中的关系,使数与形各展其长,优势互补,相辅相成,使逻辑思维与形象思维完美地结合起来。数形结合思想方法采用了代数方法与几何方法中最好的方面:几何图形形象直观,便于理解;代数方法的一般性与严谨性、解题过程的机械化、可操作性强,便于把握。因此数形结合的思想方法是学好初中数学的重要思想方法。
辩证唯物主义认为,事物是互相联系并在一定条件下可以互相转化的。“形”与“数”既有区别又有联系,直角坐标系的建立产生了“坐标法”,从而实现了它们之间的转化。在代数与几何的学习过程中,自始至终贯彻“数形结合”的思想。它不仅使几何、代数、三角知识互相渗透融于一体,又能揭示问题的实质,在解题方法上简捷明快,独辟蹊径,既能开发智力,又培养创造性思维,提高分析问题和解决问题的能力。著名数学家华罗庚说过:“数与形,本是相倚依,焉能分作两边飞,数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休,切莫忘,几何、代数统一体;永远联系,切莫分离”。数形结合,直观又入微,不少精巧的解法正是数形相辅相成的产物。
数形结合的思想,可以使学生从不同的侧面理解问题,加深对问题的认识,提供解决问题的方法,有利于培养学生将实际问题转化为数学问题的能力。数形结合的载体是数轴,依靠数轴反映出数与点的对应关系,是学生学习数学的一大飞跃。运用数形结合的思想方法思考问题,能给抽象的数量关系以形象的几何直观,也能把几何图形问题转化为数量关系问题去解决。
(1)由“数”思“形”,数形结合,用形解决数的问题。
运用图形方法解题的关键在于图形的构造,而构造图形是一项创造性的思维活动,图形的构造无规则可循,也不能生搬硬套,墨守成规,同步自封。从宏观上讲,构造图形就是善于科学抽象,善于抓住起关键作用的一些量和相依关系,巧妙地运用数学符号,式子规律去刻划其内在的关系。其思考途径,用图表示如图1。
比如通过数形结合的数学思想方法来学习相反数、绝对值的定义,有理数大小比较的法则,函数等,可以大大减轻学生学习这些知识的难度,数形结合思想的教学应贯穿于整个数学教学的始终。
(2)由“形”思“数”,数形结合,用数解决形的问题。
数形结合解决问题,常以纯代数问题转化为几何问题,即变抽象为具体来加以讨论,以达到事半功倍之目的。其实,对于一些纯几何问题转变为代数问题来解决也有此功效。
例如B、C为线段AD上两点,M是AB的中点,N是CD的中点,若AD=a,Bc=b,则MN=?
分析:由题意可知,B、C两点的位置有两种情况(图2)。
综上所述,数形结合的实际效果,或是化抽象为直观,或是化技巧为程序操作,无论哪一种形式都更好地实现了从未知到已知的转化,所以说数形结合是转化的一种手段。
4 分类讨论的思想方法
“分类”源于生活,存在于生活,分类思想是自然科学乃至社会科学中的基本逻辑方法,分类思想方法是一种等价特殊化。其基本思想是:为了解决一个有关一般对象X的问题,可将x分解为特殊的组合,而关于特殊对象的问题是易于30724aa0145e7ae71d7f17b4e95f1d551c520fea1774572abf7585f5385526aa解决的。人们可以从这种对象的组合过渡到解的组合而获德原问题的解。
分类也是研究数学问题的重要思想方法,它始终贯穿于整个数学教学中。从整体布局上看,中学数学分代数、几何两大类,采用不同方法进行研究,就是分类思想的体现;从具体内容上看,初中数学中实数的分类,式的分类,三角形的分类,方程的分类,函数的分类等等,也是分类思想的具体体现。对学习内容进行分类,降低了学习难度,增强了学习的针对性,在教学需要时启发学生按不同的情况去对同一对象进行分类,帮助他们掌握好分类的方法原则,形成分类的思想。
在初中数学中,分类讨论的问题主要表现三个方面:(1)有的概念、定理的论证包含多种情况,这类问题需要分类讨论,如几何中三角形的分类、四边形的分类、角的分类、圆周角定理、圆幂定理、弦切角定理等的证明,都涉及到分类讨论。(2)解含字母系数或绝对值符号的方程、不等式,讨论算术根、正比例和反比例函数中的比例系数、二次函数中二次项系数a与图象的开口方向等,由于这些系数的取值不同或要去掉绝对值符号就有不同的结果,这类问题需要分类讨论。(3)有的数学问题,虽然结论唯一,但导致这结论的前提不尽相同,这类问题也要分类讨论。
分类时要注意:(1)标准相同;(2)不重不漏;(3)分类讨论应当逐级进行,不能越级。
5 函数与方程的思想方法
函数思想是指用运动、变化、联系、对应的观点,分析数学与实际生活中的数量关系,通过函数这种数量关系表示出来并加以研究,从而使问题获得解决的思想。方程思想是指把表示变量问关系的解析式看作方程,通过解方程或对方程的研究,使问题得到解决的思想。
函数思想是客观世界中事物运动变化、相互联系、相互制约的普遍规律在数学中的反映。它的本质是变量之间的对应。辩证唯物主义认为,世界上一切事物都是处在运动、变化和发展的过程中,这就要求我们教学中重视函数的思想方法的教学。函数思想方法,是指用函数的概念和性质去分析问题、转化问题和解决问题。它有别于象前面所述的几种数学思想方法,它是内容与思想方法的二位一体。初中代数中的正比例函数、反比例函数、一次函数和二次函数虽然安排在初三学习,但函数思想从初一就已经开始渗透。这就要求教师在教学上要有意识、有计划、有目的地进行函数思想方法的培养。
例如,进行代数第一册“求代数式的值”的教学时,通过强调解题的条件“当??时,”渗透函数的思想方法—— 字母每取一个值,代数式就有唯一确定的值。这实际上是把第三册中函数问题的一种前置,既渗透了函数思想方法,又为函数的学习埋下了伏笔。
又如,用直角三角形边与边的比值定义的锐角三角函数:在直角坐标系中,由角的终边上一点引出的三个量x,y,r中任意两个量之比定义任意角的三角函数等,一系列的知识体系,自始至终贯穿了函数、映射、对应的思想方法。
再如,通过讨论矩形面积一定时,长与宽之间的关系;长一定时,面积与宽的关系;宽一定时,面积与长的关系。将静态的知识模式演变为动态的讨论,这样实际上就赋予了函数的形式,在学生的头脑中就形成了以运动的观点去领会知识,这是发展函数思想的重要途径。
当然,初中数学学习的思想方法还有很多,如观察与实验、分析与综合、归纳与类比以及集合论的思想方法,几何变换的思想方法等等。我们在教学实践中应立足于数学思想方法教学,充分挖掘教材中的数学思想方法,有目的、有意识、有计划的渗透、介绍和强调数学思想方法,减少盲目性和随意性,去精心设计每一个单元、每一堂课的教学目标以及问题提出、情景创设等教学过程的各个环节。
只有让学生掌握了这把金钥匙,才能使学生学好数学,提高数学素养,增强创新意识,提高创新能力。
方程思想具有很丰富的含义,其核心体现在:(1)建模思想。(2)化归思想,如在初中数学中,三元一次方程组可以化归为二元一次方程组,二元一次方程组最终化归为x=a的形式。
对初中生来说,学习方程内容最主要的事情集中在两个方面:一方面是建模;另一方面是会解方程。对于后者来说,解方程的关键在于转化,即将新的问题化归为以前可以解决的问题,利用以前的算法解决。这种化归、迭代的思想正是当代计算机的思想。
方程与函数思想紧密联系、相互渗透,方程思想在函数中的应用可形成如下的结构系统:方程思想—系数法、消元法、判别式法—求解析式、判别函数图象之间的位置、求函数图像交点。
上述数学思想不是孤立的,例如:运用函数思想解题时,往往要借助函数图像的直观性,即同时又要用到数形结合思想。因此,在解题过程中,必须善于把握运用各种数学思想的时机,对于一些难度较大,或综合性较强,或背景较新颖的问题,更应注意运用数学思想去寻求其合理解法,从而避免繁杂运算,避免“超时失分”。
参考文献
[1]刘美荣.初中数学教学中的反思[J].中国科教创新导刊,2009(6).
[2]陆晓卿.初中数学教学点滴谈[J].西北职教,2008(4).
[3]林晓波.初中数学教学新课程改革的思考[J].科学咨询(教育科研),2009(6).
[4]张琪.新课程异步教学能大面积提高初中数学教学质量[J].异步教学研究,2006(Z1).