司文华
(北京福瑞汇达科贸有限公司,中国 北京100073)
为满足工艺或结构需要,在压力容器设计中开孔是必不可少的。容器开孔接管后会引起开孔或接管部位的应力集中,再加上接管上会有各种外载荷所产生的应力及热应力,以及容器材料和制造缺陷等各种因素的综合作用,使得开孔和接管附近就成为压力容器的薄弱部位。虽然标准和规范对设计和计算都作了较为详细的规定,但在使用SW6-2011 过程设备强度计算软件计算开孔补强时需要注意对标准规范中有关定义的理解和把握,灵活运用软件,必要时对有关数据进行调整,才能得到正确的结论,保证设备的安全可靠性。
在使用SW6-2011 计算开孔补强之前要先判断接管的直径和壁厚是否满足GB150.3-2011 中6.1.3 不另行补强的最大开孔直径[1]的要求,满足要求的可以不进行计算,没有进行判断直接输入数据的,生成计算书会显示满足不另行补强的最大开孔直径的要求,不予进行计算。还需要注意的是单个孔开孔补强计算合格,然而该孔的有效补强区B=2d 范围内还有其他开孔,形成孔桥的,则应按孔桥处理。在计算两相邻开孔中心的间距或者任意两孔中心的间距时对曲面间距应按弧长计算,按照弦长或中心线垂直距离计算是不正确的。
SW6-2011 补强计算方法给出四种:等面积补强法、另一补强方法、分析方法和压力面积法。
计算软件中的等面积补强法是指单个开孔的等面积法,联合补强法是指多个开孔的等面积法。等面积法是开孔补强计算方法中最广泛应用的计算方法,该法是以补偿开孔局部截面的一次拉伸强度作为补强准则的,是以无限大平板上开有小圆孔时孔边的应力集中作为理论基础的,即仅考虑容器壳体中存在的拉伸薄膜应力,对开孔边缘的二次应力的安定性问题是通过限制开孔形状,长短径之比和开孔范围(开孔率)间接考虑的[2],使用该法应考虑开孔是否满足GB150.3-2011中6.1.1 的规定。对于承受静载的压力容器开孔,长期实践证明该法在允许使用范围内,其补强结果是比较安全可靠的。分析法是根据弹性薄壳理论得到的应力分析法用于内压作用下具有径向接管圆筒的开孔补强设计,其开孔率可达0.9。压力面积法为HG20582-2011 大开孔的补强计算[3]中介绍的补强方法,其开孔率可达0.8。分析法和压力面积法都是适用于大开孔径向接管补强计算的,不能计算斜接管。大开孔即超出等面积补强法适用范围的开孔。而且分析法只能用在筒体上的开孔,封头上的大开孔应用压力面积法计算,但在我国压力面积法尚不能作为合法的设计依据,该方法只能参考使用。压力面积法和等面积法一样,都不适用于有疲劳强度要求的开孔补强计算。另一补强方法则为基于塑性失效准则的极限分析法,对受内压单个开孔的密集补强采用[4],这种设计方法限制条件:接管横截面必须为圆形,其中性轴垂直于壳体、接管和补强件应采用整体结构,过渡部分应打磨成圆角[5]。
使用SW6-2011 软件进行单个开孔补强计算输入数据后,软件根据输入条件自动选择适合的计算方法,如不符合单孔补强条件形成孔桥的,则必须选择联合补强法,并输入相关数据才能得到正确的计算结果。
冲压封头的最小厚度必须满足强度设计的要求,是压力容器安全使用的前提条件。GB/T25198-2010《压力容器封头》中6.3.13 规定:根据制造工艺确定封头的投料厚度,以确保封头的成品最小厚度不小于设计要求的最小成型厚度[6]。设计要求的最小成型厚度一般要大于等于设计压力下的设计厚度即计算厚度加上腐蚀余量。还应考虑由于下料厚度大于名义厚度后有可能造成许用应力下降,如遇此种情况应把设计规定的成型后封头最小厚度乘以最小厚度的许用应力与落料厚度许用应力的比值。还有些设备需要标注最高允许工作压力的,比如需安装安全泄放装置且需进行气密性试验的容器,为使安全泄放装置的整定压力高于气密性试验压力,应确定设备的最高允许工作压力。由于固定式压力容器安全技术监察规程4.8 规定:对于介质毒性程度为极度、高度危害或者设计上不允许有微量泄露的压力容器,应该进行泄漏实验,泄露试验根据试验介质种类的不同,分为气密性实验以及氨检漏试验、卤素检漏试验和氦检漏试验等。其中气密性试验压力为压力容器的设计压力。进行气密性试验时,一般应当将安全附件装配齐全。又根据固定式压力容器安全技术监察规程3.9.2 规定:超压泄放装置的动作压力(1)装有超压泄放装置的压力容器,超压泄放装置的动作压力不得高于压力容器的设计压力(2)对于设计图样中注明最高允许工作压力的压力容器,允许超压泄放装置的动作压力不高于该容器的最高允许工作压力[7]。为使超压泄放装置在做气密性试验的时候不起跳,又能满足规定,需要在图纸上注明最高允许工作压力,最高允许工作压力应综合考虑包括筒体、封头、法兰和接管等在内的所有受压部件所允许承受的最大表压力。这时取气密性试验压力等于设计压力,超压泄放装置的动作压力高于该容器的设计压力,低于最高允许工作压力。此时封头的最小成型厚度要大于等于最高许用工作压力下的设计厚度。
按照GB150.3-2011 等面积补强法进行开孔补强计算时,需计算壳体有效厚度减去计算厚度之外的多余面积A1如图1 所示,其值按式(1)计算。
图1 补强面积A1
式中:B 为补强有效宽度;dop为开孔直径;δe为壳体开孔处的有效厚度;δ 为壳体开孔处的计算厚度;δet为接管有效厚度;fr为强度削弱系数。
因1- fr的值很小,一般情况下A1的值随δe的值增大而增大。有效厚度一般按式(2)计算:
式中:δn为名义厚度;c1为钢板负偏差;c2为腐蚀余量。
由于封头给出最小厚度δmin时,封头的实际厚度可能小于名义厚度,此时进行开孔补强计算时,封头开孔处的有效厚度应取δe=δmin-c2。
采用SW6-2011 软件进行开孔补强计算时,封头的有效厚度不是直接输入的,而是程序根据输入数据计算生成的,为得到合理的计算结果,通常用两种方法对输入数据进行调整。
(1)对腐蚀裕量的值进行调整为c2,=(δn-c1-δmin)+c2;
(2)把封头的最小厚度填到壳体名义厚度的地方,并且指定壁厚负偏差为零进行计算。
旧标准GB150-1998《钢制压力容器》标准里没有明确的给出开孔补强的计算截面的选取。在实际设计中有些设计者往往分不清接管实际外伸长度具体指的是筒体轴向截面的外伸高度还是筒体径向截面的外伸高度,而且非径向接管的外伸端面并非平行于筒体表面,因此在径向和轴向截面上接管两侧的伸出长度也不一定相等。在这种情况下,简单的选取最短边就有可能造成裕量过大和材料浪费。新标准GB150.3-2011 中规定了: 所需最小补强面积应在下列规定的截面上求取,对于圆筒或锥壳开孔,该截面通过开孔中心点与筒体轴线,对于凸形封头和球壳开孔,该截面通过开孔中心点沿开孔最大尺寸方向且垂直于壳体表面。这一规定明确了开孔补强计算的取值截面,给设计者带来很大的方便,其理论依据是因为内压圆筒的计算厚度公式是根据一次总体环向薄膜应力所导出的,环向应力是轴向应力的两倍,是筒体中最大的一次薄膜应力,并且为纵向截面所承载。因此,开孔削薄的计算面积也应是轴向截面,相应的接管外伸有效高度也应是在轴向截面上接管的外伸高度。
SW6-2011 计算椭圆开孔补强时,输入开孔直径的通常处理办法为: 位于封头上的椭圆人孔在确定开孔直径时应按长轴尺寸确定;位于筒体上时,按平行设备轴线方向的开孔尺寸确定。例如,椭圆开孔的短轴平行于设备的轴线,那么开孔尺寸按短轴尺寸计算。这主要取决于设备的应力分布,筒体的轴向应力是其环向应力值得一半。
SW6-2011 计算软件在压力容器设计中的应用,提高了设计效率,给设计人员带来了很大的方便,但对设计人员的素质也提出了较高的要求。有的设计人员由于缺乏正确理解常用标准规范和软件计算的理论基础,导致数据输入有误,又忽略计算过程,得出错误的结论,产生安全隐患。开孔补强计算是压力容器强度计算的重要部分,需要设计人员充分考虑设计参数、标准要求、计算方法及特殊情况对数据的调整,重视设计过程中的某些细节问题,计算时严格校审选用的模块、输入的数据、输出的结果,详细检查计算书的每一个数据是否正确,确保其符合设计标准规范的规定,保证设备的安全可靠性。
[1]GB150.1~150.4-2011,压力容器[S].
[2]全国锅炉压力容器标准化技术委员会编.压力容器设计工程师培训教程[M].北京:新华出版社,2005,10:208.
[3]HG20582-2011 钢制化工容器强度计算规定[S].
[4]秦叔经.SW6-2011 在工程设计中的应用[R].全国化工设备设计技术中心站.
[5][美]法尔(Farr,J.R.)贾瓦德(Jawad,M.H),郑津洋,等译.ASME 压力容器设计指南.2 版[M].北京:化学工业出版社.2003.3:107.
[6]GB/T25198-2010 压力容器封头[S].
[7]TSG R0004-2009 固定式压力容器安全技术监察规程[S].