一类差分方程的奇点集和解的全局性

2013-05-25 00:31全卫贞
关键词:方程解奇点湛江

全卫贞

(湛江师范学院基础教育学院,广东湛江 524037)

一类差分方程的奇点集和解的全局性

全卫贞

(湛江师范学院基础教育学院,广东湛江 524037)

差分方程;奇点集;平衡解;二周期解;全局性

[1]中,Ladas研究了Riccati差分方程

在参考文献[3]中,骆元媛研究了三阶差分方程

1 预备知识

2 主要结果

参考文献

[1] Ladas G, Kulenovic M R S. Dynamics of the second rational difference equations with open problems and conjectures [M]. New York: Chapman and Hall / CRC, 2002: 17-24.

[2] Sedaghat H. On third-order rational difference equations with quadratic terms [J]. Journal of Difference Equations and Applications, 2008, 8: 889-897.

[3] 骆元媛. 一类有理差分方程解的全局行为[D]. 四川: 四川大学数学学院, 2012: 8-34.

[4] 完巧玲. 差分方程解的全局稳定性[J]. 陇东学院学报, 2012, 20(2): 6-8.

[5] Dehghan M. Global behaviour of the Riccati difference equation of order two [J]. Journal of Difference Equations and Applications, 2011, 4: 467-477.

[6] Elsayed E M. Qualitative behaviour of difference equation of order two [J]. Mathematical and Computer Modelling, 2009, 50: 1130-1141.

[7] Kelley W G, Peterson A C. Difference Equations with Applications [M]. New York: Academic Press, 1991: 1-98.

[8] Kocic V L, Ladas G. Global behavior of nonlinear difference equations of higher order with applications [M]. Dordrecht: Kluwer Academic Publishers, 1993: 1-121.

[9] Cinar C. On the positive solutions of the difference equation [J]. Applied Mathematics and Computation, 2004, 156: 587-590.

[10] Camouzis E, Ladas G. When does local asymptoic stability imply global attractivity in rational equations [J]. Journal of Difference Equations and Applications, 2006, 12: 863-885.

[11] Sun T X, Xi H J. The periodic character of the difference equation[J]. Advances in Difference Equations, 2008, DOI: 10.1155/2008/143723.

[12] Yu J S, Wang Z C. Asymptotic behavior and oscillation delay difference equations [J]. Funkcial Eekvac, 1994, 37: 241-249.

The Forbidden Set and the Global Behavior of Solutions of a Difference Equation

QUAN Weizhen
(College of Basic Education, Zhanjiang Norman University, Zhanjiang, China 524037)

Difference Equation; Forbidden Set; Equilibrium Solution; Period-two Solution; Global Behavior

O175.12

A

1674-3563(2013)03-0011-06

10.3875/j.issn.1674-3563.2013.03.003 本文的PDF文件可以从xuebao.wzu.edu.cn获得

(编辑:王一芳)

2012-10-18

湛江师范学院青年项目(QL1021)

全卫贞(1980- ),女,广西玉林人,讲师,硕士,研究方向:差分方程与动力系统

近些年来,差分方程理论引起了许多学者、专家的重视,已成为现代数学的一个研究热点.Ladas等人在文献[1]中提出了关于差分方程的公开问题和猜想;另外,差分方程的奇点集和解的有界性、收敛性、稳定性、周期性等动力学性质也得到了人们的广泛关注,并获得很多的研究成果[1-12].

猜你喜欢
方程解奇点湛江
Navier-Stokes-Coriolis方程解的长时间存在性
漫步湛江
校中有笑
校中有笑
校中有笑
奇点迷光(上)
几类可积的Riccati方程解的性质
写湛江、画湛江大型书画基层采风作品选
写湛江、画湛江大型书画基层采风创作巡展活动启动
一类Kirchhoff-Poisson方程解的存在性