数字喷墨打印用陶瓷颜料的制备工艺进展

2013-04-29 00:44:03朱振峰付璐
佛山陶瓷 2013年5期

朱振峰 付璐

摘 要:本文介绍了数字喷墨打印用陶瓷颜料的几种制备技术,如:固相分散法、溶胶-凝胶法、化学共沉淀法、水热法、微乳液法、自蔓延燃烧法、微波加热法、机械化学合成法、声化学法等。对这些工艺技术的组合,如:超声-共沉淀、共沉淀-水热、微波-溶胶凝胶、微波-水热、微乳液-水热、自蔓延燃烧-水热技术等也作了分析。讨论了陶瓷数字喷墨打印技术的特点、研究现状、存在问题及发展前景。

关键词:喷墨打印;陶瓷颜料;工艺进展

1 前言

随着数字化技术的发展与普及,喷墨打印技术正突破常规,进入到了我们所熟悉和不熟悉的领域,例如:办公室文件打印、户外广告喷绘、数码照片冲印、纺织品喷墨印花等,还有生物技术、生物工程、法学、金属沉淀学、微结构制造、电子制造、网络连接、制药、玻璃、陶瓷装饰及显示器制造等各个领域。

陶瓷喷墨打印技术作为一种数字化技术,是将小墨滴从直径为数十微米的喷嘴喷出,以每秒数千滴的速度沉积在载体上,可以实现无机材料表面的随意装饰,可以将任意复杂花色的图案像彩色打印一样打印到陶瓷以及玻璃的表面上。打印机的工作类型有两种:需求喷墨打印机和连续喷墨打印机。喷墨打印头有三类:一是使用压电陶瓷元件将机械振动转变成墨水压力波,从而排出墨滴的系统;二是使墨水骤然加热而产生气泡,从而通过气泡压力波排出墨滴的系统;三是吸取墨水,并通过静电力使其定向飞扬的系统。

在陶瓷产业结构调整的关键时期,陶瓷喷墨技术以其“资源化、低碳化、数字化、个性化、功能化、智能化”发展的特点,在陶瓷行业掀起了一股“巨浪”。自2009年中国引进第一台喷墨打印机开始,中国喷墨市场就在被逐渐地打开,其分别经历了国产化第一阶段的“萌芽期”和第二阶段“青涩期”。至此,喷墨市场进入完全的“成熟期”。具体来说,从2011开始就进入了一个全面开启的“井喷期”,这个“井喷期”还将继续持续,在未来的某个时候,市场容量可能达到1000台。

2 陶瓷喷墨打印的优势

陶瓷喷墨打印技术具有以下明显的特点与优势。

(1) 个性化

能够实现个性化设计与制造,既节省时间,又提高效率。

(2) 精细化

几何形状由计算机软件控制,图像分辨率高,可制作各种复杂图案。

(3) 高速化

如:在纸品印刷上,印刷速度可达6~10m/s。

(4) 网络化

适应面广,机械化、自动化程度高。该系统由计算机控制,从图案设计到喷墨程序再到执行步骤,印刷图案可在短短的几秒钟内迅速变换,并可通过网络远距离传输。

(5) 无接触

和丝网印花相比,它属于无接触印花。它没有丝网作为介质,与被装饰的形状复杂半成品表面相接触的只是油墨。能突破现有装饰手段中的一些人为因素的制约,进一步提高陶瓷装饰效果。

(6) 低碳化、资源化

与陶瓷其他装饰方法相比,大大减少了色料、釉料的浪费。

(7) 智能化、功能化

陶瓷喷墨打印技术可应用于固体氧化物电池的制造、多层显微电路制造、结构或压电有序陶瓷复合材料制备,以及小体积高复杂的整体陶瓷元件的制造等。

3 陶瓷墨水的组成与性能

陶瓷喷墨技术的核心组成材料——陶瓷墨水通常由陶瓷粉料(色料、着色剂、釉料)、溶剂、分散剂、结合剂、表面活性剂及其它辅料构成。陶瓷粉料(色料、着色剂、釉料)是墨水的核心物质。要求其颗粒度小于1μm,平均粒径为0.5μm,颗粒尺寸分布要窄,颗粒之间不能有强团聚,具有良好的稳定性,受溶剂等其它物质的影响小。溶剂是把陶瓷粉料(色料、着色剂)从打印机输送到受体上的载体,同时,又控制着干燥时间,使墨水粘度、表面张力等不易随温度变化而改变。溶剂一般采用水溶性有机溶剂,如:醇、多元醇、多元醇醚和多糖等。分散剂是帮助陶瓷粉料(色料)均匀地分布在溶剂中,并保证在喷印前粉料不发生团聚。分散剂主要是一些水溶性和油溶性高分子类、苯甲酸及其衍生物、聚丙烯酸及其共聚物等。结合剂是保障打印的陶瓷坯体或色料具有一定的强度,便于生产操作,同时,可调节墨水的流动性能,通常树脂能起到结合剂和分散剂的双重作用。表面活性剂是控制墨水的表面张力在适合的范围内。而其它辅助材料主要有墨水pH值调节剂、催干剂、防腐剂等。

陶瓷墨水的性能要求为除普通墨水的颗粒度、粘度、表面张力、电导率、pH值以外,根据陶瓷应用特点还要求一些特殊性能。如:要求陶瓷粉料(色剂)在溶剂中能保持良好的化学和物理稳定性,经长时间存放,不会出现化学反应变化和颗粒团聚沉淀;要求在打印过程中,陶瓷(色料)颗粒能在短时间内以最有效的堆积结构排列,附着牢固,获得较大密度的打印层,以便煅烧后具有较高的烧结密度;要求打印的色剂具有高温烧成后的稳定性能、良好的呈色性能,以及与坯釉的匹配性能。

4 陶瓷墨水的制备

目前,行业内陶瓷墨水常用的制备方法主要有溶胶法、反相微乳液法及分散法,三种方法各有优缺点[19-21]。其中,溶胶法具有较高的分散稳定性,物化性能容易调节而备受关注。但另一方面,溶胶液是一种热力学不稳定体系,所以,当其长时间放置时,会出现沉降现象;反相微乳液法虽然具有良好的分散稳定性,但由于墨水中固含量偏低,所以限制了其发色性能,而且不适合组成复杂的颜料;分散法制备工艺简单、成本低廉,但其分散稳定性较差,在分散过程中,其颗粒形貌难以控制。因此,在喷墨打印时,容易堵塞喷头,而且当墨水浓度较高时,容易出现絮凝、触变等现象,从而影响打印效果。

除了以上三种方法外,随着喷墨技术对颜料的要求越来越高,新的制备技术值得研究。如:化学共沉淀法、水热法、蔓延燃烧法、微波加热法、机械化学合成法、声化学法等。对这些工艺技术的组合,如:超声-共沉淀、共沉淀-水热、微波-溶胶凝胶、微波-水热、微乳液-水热、自蔓延燃烧-水热技术等。借助这些新工艺,使得陶瓷颜料的制备技术和性能会有新的突破。

4.1 化学共沉淀法制备陶瓷墨水

所谓化学共沉淀法即采用可溶性金属盐类与氢氧化物相互作用,生成沉淀的水合络合物或形成复杂的多核络合物,然后将沉淀物煅烧得到结晶产物。此法可以通过溶液中的各种化学反应直接得到化学成分均一的超微粉体,使得各种成分的混合程度达到分子、原子级水平。此方法已在陶瓷颜料制备中得到广泛应用,目前,已用此法制备出着色力强、颗粒分布范围窄的一系列陶瓷颜料。如:钴铝尖晶石颜料、铬铝锌红颜料、硫硒化镉颜料、硫硒化锌基颜料及透明氧化铁黄颜料等。俞康泰等人采用化学共沉淀法制备了高品位、高温稳定的铬锡红色料。

近年来,超声波技术在材料制备中发挥了越来越大的作用,借助超声在溶液中产生的“空化效应”,具有瞬时高温高压特性,可以合成粒度小、粒径均匀、无团聚的纳米陶瓷粉体。超声技术与共沉淀技术结合,出现新技术——超声-共沉淀技术。水热法制备的粉体高结晶度、低缺陷密度。水热技术与共沉淀技术结合,出现了新技术——共沉淀-水热技术。

4.2 微波照射-溶胶凝胶法制备陶瓷墨水

微波照射-凝胶溶胶法具有反应时间短、产率高的优点。吴东辉等在晶体生长剂存在下,用微波照射溶胶凝胶两步法制备了纺锤体α-Fe2O3,其产率高达100%。

4.3 微波水热法制备陶瓷墨水

微波技术主要优点是反应体系升温快、反应速率快、反应时间短、反应选择性高等。水热法制备具有特定晶形、颗粒分散性好的纳米颗粒,反应需要在相对高的温度和压力下进行。微波场辐照作用与水热反应相结合,发展出了一种新的水热合成方法——微波水热技术。其优点是,对反应体系加热迅速、均匀,不存在温度梯度,对很多反应体系具有加速化学反应的效果。

4.4 微乳液-水热法制备陶瓷墨水

微乳液法制备纳米粒子具有实验装置简单、操作容易,以及产物组分和粒径可控等优点,在制备单分散、细粒度纳米粒子方面具有明显的优势和广泛的适用性,是理想的反应器。微乳液法和水热法结合,利用各自的优点,出现了新技术——水热-微乳液技术。

4.5 自蔓延-水热法制备陶瓷墨水

自蔓延法利用原料自身的燃烧放热,即可达到合成反应所需的温度,从而快速合成出氧化物粉体;水热法制备粉体的主要驱动力是氧化物在不同状态下溶解度的不同,制备的粉体结晶度高、缺陷密度低,集燃烧合成与水热处理的优点于一体——自蔓延-水热法。如,具有反应时间短、颗粒细小、均匀、分散性好、结晶完善等优点。

5 国内外研究现状

5.1 国外喷墨打印用陶瓷墨水的研究现状

喷墨打印用陶瓷墨水的研究在国外起步较早,大量文献报道主要集中在功能陶瓷墨水方面,包括以ZrO2、TiO2、CeO2、SiO2、SnO2、Al2O3、BaTiO3及PZT等为核心物质的特种陶瓷墨水。在制备方法上主要采用直接分散法和溶胶法两种。该类墨水属于微型制造或快速原型制造用的陶瓷墨水,主要用于固体氧化物电池、多层显微电路、压电有序陶瓷复合材料,以及小体积高复杂的整体结构陶瓷元件的制造。随着喷墨打印技术在陶瓷装饰方面的应用,陶瓷装饰墨水也随之产生。1975年7月7日,美国的A.B.Dick公司申请了“用于玻璃的喷墨打印墨水混合物(Jet printing ink composition for glass, patent number US 004024096)”的专利。这是有关陶瓷装饰用喷墨打印墨水最早的报道,该专利介绍了一种用于玻璃或涂釉陶瓷表面的喷墨打印墨水。其组成为:20wt%的酚醛清漆树脂、3wt%~7wt%的防挥发剂(乙二醇乙醚或乙二醇酯)、乙醇、水(水是乙醇的50 wt%)、能电离的可溶性盐(使得墨水电阻率超过2000Ω/cm)。1992年2月26日,美国Airey等人公开申请了名为“用于陶瓷或玻璃表面打印的喷墨打印机墨水(Ink jet printer ink for printing on ceramics or glass)”的专利[7],此墨水的稳定性及着色能力均较差。针对以往专利的不足,2000年1月7日,西班牙Ferro公司向美国专利商标局提交了一份名为“用于陶瓷釉面砖(瓦)和表面彩色喷墨印刷的独特油墨和油墨组合”(Inks for the marking or decoration of objects,such as ceramic objects,patent number US 005273575)”的专利,该专利系统阐述了非水溶性陶瓷墨水的制备方法和多种中间颜色的组合,为陶瓷喷墨打印技术在建筑陶瓷砖中的应用奠定了基础。2004年8月24日,以色列的DIP Tech Ltd.公司申请了“用于陶瓷表面的墨水(Ink for ceramic surfaces,patent number US 007803221 B2)”的专利。该专利介绍了一种在陶瓷和玻璃表面喷墨打印的墨水,包含纳米二氧化硅和色料。2004年10月12日,意大利的Colorobbia Italia S.P.A.公司申请了“纳米悬浮液形式的陶瓷着色剂(Ceramic colorants in the form of nanometric suspensions, patent number US 007316741 B2)”的专利。该专利介绍了由纳米级颗粒所组成的悬浮液状陶瓷着色剂,以及它们的产品和用途。2006年5月21日,以色列的SIMON KAHN-pYI Tec,Ltd.公司申请了“适用于陶瓷产品的着色墨水及其制备方法(Pigmented inks suitable for use with ceramics and method of producing same,patent number US 2008/0194733)” 的专利。该专利介绍了一种生产陶瓷装饰用喷墨打印墨水的方法。目前,Ferro公司已成为全球主要的陶瓷装饰墨水生产商之一。同时,西班牙的Esmalglass-itaca、Torrecid、Colorobbia、Fritia、Salquisa、Bone公司和意大利的Smalticeram、Metco、Sicer公司也具有大规模生产陶瓷装饰墨水的能力[8]。此外,A.Atkinson等人[9]采用溶胶法制备了连续式喷墨打印用陶瓷装饰的Cr-Al红墨水和Ni-Al蓝墨水,采用陶瓷喷墨打印机对坯体进行装饰,在900℃条件下烧成,效果良好。S.Obata等[10]人采用分散法制备了黄、红、蓝、黑四种陶瓷装饰墨水.同时,对色料的粒度及分布、分散剂的种类及添加量、粘度、pH值等对墨水性能影响进行了系统研究,并确定了各参数的最优值。

总之,在国外,随着功能陶瓷墨水制备技术的研究与发展,其关键技术已经开始逐步走向公开化,详细的研究报道(包括:制备方法、配方等)很多。但是对于装饰用的陶瓷墨水而言,可供参考的研究性文献极少,其关键技术主要被掌握在少数西班牙陶瓷色釉料公司。我国要彻底突破此项技术,创出自己的民族品牌,需要企业家和科技工作者共同付出巨大的努力,必须基础理论、材料制备与表征、工艺技术等各方面深入的研究。

5.2 国内喷墨打印用陶瓷墨水的研究

国内喷墨打印用陶瓷墨水的研究始于2000年。近年来,部分高等院校、研究所及企事业单位纷纷对喷墨打印用陶瓷墨水进行了研究报道[11-15]。目前,国内已有部分研究单位申请了陶瓷墨水相关的发明专利。2004年1月8日,中科院化学所申请了《一种无机颜料水溶胶及制备方法和应用》的专利,专利号:200410001432.0。2006年7月20日,中国制釉股份有限公司(台湾)申请了《高色浓度微细化无机颜料其制法及无机颜料墨水组合》的专利,专利号:200610106160.X。2009年12月19日,广东道氏制釉申请了《一种陶瓷喷墨打印用黑色颜料及其制备方法》(专利号:20091031 1821.6)和《一种陶瓷喷墨打印用棕色颜料及其制备方法》(专利号:200910311865) 的专利。2009年12月22日,广东道氏制釉申请了《一种陶瓷喷墨打印用锆铁红颜料及其制备方法》的专利,专利号:200910311976.X [21]。2010年2月1日,广东科信达申请了《一种Mn-A1红陶瓷色料的制备方法》的专利,专利号:200910311976.X。2011年7月5日,佛山欧神诺和博今科技联合申请了《一种使用于喷墨打印的陶瓷渗透釉及其用于陶瓷砖生产的方法》的专利,专利号:2011101872456。截止到目前,国内总共有8篇有关喷墨打印用陶瓷墨水的发明专利,其中 4 篇关于陶瓷装饰墨水用超细粉体制备和4篇有关陶瓷装饰墨水制备。

据报道,广东博奥科技是国内首家自主研发,并批量生产陶瓷喷墨打印用墨水的企业。2011 年,该企业在广州陶瓷工业展览会上展出了九种颜色的陶瓷墨水和一种面釉,引发了媒体和观展商的高度关注。据称,该公司从两年前开始研发陶瓷喷墨墨水,2012年3月就已宣布成功研制出陶瓷喷墨打印用墨水。目前,博奥的陶瓷墨水正在积极地开拓市场用户。另外,道氏制釉、大鸿制釉、金鹰颜料、华山制釉、万兴色料等企业也均在研发陶瓷喷墨墨水。同时,可以看到,国内陶瓷墨水的研发和生产主要集中在广东省佛山市,一些色釉料企业积极投入到陶瓷墨水的研发与生产中,在国内处于相对领先的水平。

6 喷墨打印用陶瓷墨水所存在的问题

6.1 陶瓷色釉料颗粒的大小及其分布情况

陶瓷色釉料颗粒的大小及其分布对其发色有较大的影响,粒度太大或太小、粒度分布太宽均不利于发色[22]。对于陶瓷喷墨用无机颜料,其最大尺寸要小于 1μm,且颗粒尺寸分布要窄,颗粒间不能有强团聚。因此,在色料微细化过程中,控制其粒度及分布,防止发色变弱非常关键。

6.2 无机陶瓷色料的微细化与分散稳定性[23]

陶瓷墨水拉线经常出现大面积深色喷墨打印的情况,这是由于每若干组喷头只负责一种颜色,当大面积深色喷墨打印时(尤其是接近于单色),这几组喷头的喷墨量加大,会造成喷头阻塞(喷头不出墨)和表面附着污染物(污染物可能引起溅射),喷射不到的地方即为拉线缺陷。除了喷头本身的原因外,喷头的位置也是一个影响因素。对于无机陶瓷色料分散型墨水,颗粒尺寸和形状可能引起喷头磨损,墨水的沉淀可能引起堵塞或粘附喷头。因此,制备单分散、高分散稳定性的陶瓷纳米颗粒尤为关键。

6.3 分散剂溶剂的选择[24]

在陶瓷墨水研发过程中,溶剂及其他添加剂的物化性能对墨水的性能影响较大。美国专利(US5273575)和欧洲专利(EP0572314A1)均为水溶性陶瓷墨水,对于建筑陶瓷釉面砖,其釉料通常采用水的悬浮液涂覆,水溶性油墨在坯体上容易产生扩散。因为油墨在边缘处的干燥速率大于中心处,在干燥的过程中,中心处的墨水将向边缘流动,使得干燥后边缘处的厚度比中心处的厚,影响分辨率及发色的均匀性。因此,对于陶瓷釉面砖需要将研发的重点集中在非水溶性陶瓷墨水上。

6.4 发色效果的问题

陶瓷色料的发色效果主要取决于微观结构,即离子的结构、电价、半径、配位数及离子间的相互极化。陶瓷色料的着色主要可分成三大类:晶体着色、离子着色和胶体着色。其中,晶体着色最稳定,如:刚玉型的铬铝红、金红石型的钒锡黄、锆英石型的钒锆蓝、尖晶石型的钴铁铬铝黑、石榴石型的维多利亚绿等。在陶瓷色料结构体系中,尖晶石型陶瓷色料的晶体结构致密、发色稳定、气氛敏感度小,特别是其高温稳定性和化学稳定性好,且饱和度随细度的降低反而增大。如:钴蓝系列、棕黄系列和黑色系列。因此,陶瓷墨水最好选择尖晶石等结构类型的陶瓷色料[25]。

6.5 花色品种单一

尽管目前已研发出大约 12~14 种陶瓷墨水,包括 7 种不同颜色[16-18]。其中,蓝色发色力最强;黄色发色力较弱,现有的黄色墨水带有绿色调;棕色居中;鲜艳的红色仍然很难发色,且白色墨水的白度也不高。此外,现有陶瓷墨水一般为3色(蓝、棕、黄)、4色(蓝、棕、黄、黑)及5色,其中,在瓷砖生产中使用 3~4 色组合的较多,5色正在推广,6色组合较少。从已成功应用喷墨打印装饰技术的陶瓷企业生产情况来看,现有的墨水生产浅色瓷砖具有优势,而生产深色瓷砖仍需改进,此外,红色系瓷砖生产也需改善。从另一个角度来讲,现有陶瓷墨水生产浅色的内墙陶质有釉砖具有优势,而生产色深的瓷质仿古砖仍有不足。

7 结语

(1) 陶瓷喷墨打印技术是陶瓷装饰技术的一场革命,该项技术将导致陶瓷行业的重新洗牌,把陶瓷行业带入一个崭新的时代。它涉及了化学、材料学、纳米粉体制备技术、表面改性理论及流变学理论等众多领域。因此,需要企业家和科技工作者付出巨大的努力,共同深入研究、探索,才能走的更远。

(2) 在喷墨颜料制造工艺方面,随着喷墨技术对颜料的要求越来越高,新的制备技术值得研究。除了固相分散法、溶胶法和微乳液法外,如:化学共沉淀法、水热法、自蔓延燃烧法、微波加热法、机械化学合成法、声化学法等,以及对这些工艺技术的组合,如:超声-共沉淀、共沉淀-水热、微波-溶胶凝胶、微波-水热、微乳液-水热、自蔓延燃烧-水热技术等。借助这些新工艺,各取所长、相互补充,既能使颜料颗粒达到纳米级别,又能使晶体结构充分发育完善,减少结构缺陷,提高发色能力。新技术的进一步发展和完善将会使喷墨陶瓷颜料的制造和性能得到新的突破。

(3) 采用在油性分散介质中,以高分子聚合物纳米微粒为模板,制备核壳型结构的有机/无机复合纳米胶囊,该胶囊不但具有核壳型结构、高分散稳定性,而且可获得颗粒表面形貌规则、结构缺陷少、发色能力强的喷墨打印墨水颗粒。进而通过调控在油性分散介质中物质的转移率,使得陶瓷墨水中固含量变为可控,这有望彻底解决喷墨打印用陶瓷墨水稳定性的问题,并大幅度提高发色性能。

(4) 陶瓷喷墨技术的功能化是陶瓷装饰的又一发展方向。通过喷墨技术在陶瓷表面喷涂功能化、智能化涂层,会赋予建筑陶瓷全新的功能。如:对陶瓷赋予抗菌、自洁,以及热、声、光、湿、电、磁、气、辐射等敏感功能,将会对城市噪音,城市或家居空气环境包括:热污染、气体污染、噪声污染、湿度污染、光污染和辐射污染等可以起到抑制与控制作用。智能时代少不了智能陶瓷墨水的妆点。

(5) 随着陶瓷喷墨技术的日益成熟和迅速扩张,新一代的“陶瓷激光打印技术”将会应运而生。这将对陶瓷颜料提出更加严格的要求,如:纳米颜料粉体的固态分散性能、电性能以及磁性能等。可以预计:“陶瓷激光打印技术”将会使陶瓷装饰档次更上一个新台阶,是陶瓷计算机(数字化)装饰的又一次革命。

参考文献

[1] 黄惠宁,柯善军,孟庆娟等.喷墨打印用陶瓷墨水的研究现状及其发展趋势[J].佛山陶瓷,2012,2:27~35.

[2] 韩复兴,范新晖,王太华等.浅析陶瓷墨水的发展方向[J].佛山陶瓷,2011,6:1~3.

[3] 秦威,胡东娜.陶瓷喷墨色料的生产及其工艺探讨[J].佛山陶瓷,2011,8:23~25.

[4] 汪丽霞,何臣,侯书恩.纳米氧化锆陶瓷墨水的制备[J].矿产保护与利用,2005,1:29~32.

[5] 郭瑞松,赵丹,齐海涛.反相微乳液法非水相 ZrO2陶瓷墨水的制备与性能[J].天津大学学报,2004,37(5):428~433.

[6] DOU RUI, WANG TIANMING, GUO YUNSHAN. Ink- jetprinting of zirconia: coffee staining and line stability[J]. J. Am. Ceram. Soc., 2011, 94 (11): 3787~3792.

[7] AIREY A C, CROOKS M E, BRETT R D. Ink jet printer ink for printing on ceramics or glass[P].US5407474,1992,2,26.

[8] DE SAINT ROMAIN P. Inks for the marking or decoration ofobjects, such as ceramic objects[P].US 5273575, 1992,5,21.

[9] P.迪圣罗曼.用于标记或物品装饰尤其是陶瓷物装饰的墨水[P].专利号:92104899.8,1993,2,17.

[10] 贾维尔.加西亚.赛恩斯,卡诺斯.贝内.加西亚,乔斯.路易斯.芬诺洛萨.罗梅罗等.用于陶瓷釉面砖(瓦)和表面的色彩喷墨印刷的独特油墨和油墨组合[P].专利号:00818261.2,2003,5,28.

[11] 吴小琴,汪婷,邓安民等.喷打用黑、黄色陶瓷表面装饰墨水的制备与性能.中国陶瓷,2006,2:28~31.

[12] 吴小琴,汪婷,邓安民等.喷打用蓝色陶瓷表面装饰墨水的制备与性能.中国陶瓷,2005,3:38~42.

[13] 柯林刚,屠天民,武祥珊等.陶瓷表面装饰墨水的制备研究.中国陶瓷,2009,1:30~34.

[14] 周振君,丁湘,郭瑞松等.陶瓷喷墨打印成型技术进展[J].硅酸盐通报,2000,6:37~41.

[15] 吴小琴,罗晓平,陈同彩.喷打用Ce1-xPrxO2红色陶瓷装饰墨水呈色性能研究[J].稀土,2010,6:85~88.

[16] CHOUIKI M, SCHOEFTNER R. Inkjet printing of inorganic sol-gel ink and control of the geometrical characteristics[J]. J. Sol- Gel. Sci.Technol., 2011, 58(1): 91~95.

[17] ZHOU ZHENJUN, YANG ZHENGFANG, YUAN QIMING. Barium titanate ceramic inks for continuous ink- jet printing synthesized by mechanical mixing and sol- gel methods. Trans. Nonferrous[J]. Met. Soc.China, 2008, 18(1): 150~154.

[18] TSENG WENJEA, CHEN CHUNNAN. Dispersion and rheology of nickel nanoparticle inks[J]. J. Mater. Sci., 2006, 41(4): 1213~1219.

[19] TENG W D, EDIRISINGHE M J, EVANS J R G. Optimization of dispersion and viscosity of a ceramic jet printing ink[J]. J. Am. Ceram. Soc., 1997, 80(2): 486~494.

[20] SONG JINHUA, EDIRISINGHE M J, EVANS J R G. Optimizationof dispersion and viscosity of a ceramic inks[J]. J. Am. Ceram. Soc., 1999,82(12): 3374~3380.

[21] GALLAGE R, MATSUO A, FUJIWARA T. On- site fabrication of crystalline cerium oxide films and patterns by ink- jet deposition method at moderate temperatures[J]. J. Am. Ceram. Soc., 2008, 91 (7): 2083~2087.

[22] VIRICELLE J P, RIVIERE B, PIJOLAT C. Optimization of SnO2 screen- printing inks for gas sensor applications[J]. Journal of the European Ceramic Society, 2005, 25(12): 2137~2140.

[23] OBATA S, YOKOYAMA H, OISHI T. Preparation of aqueous pigment slurry for decorating white ware by ink jet printing[J]. Journal of Materials Science, 2004, 39(7): 2581~2584.

[24] 周燕,曾德朝,钟保民.一种喷墨打印用硅酸锆包裹型色料及其制备方法[P].专利号:201010604806.3, 2010,12,24.

[25] Giacomini P. World production and consumption of ceramic tiles[J].Ceramic World Review, 2011, 8- 10: 38~52.