陈传芳
摘 要:当前在高等职业教育中高职数学教育面临着很大的困惑,现行的教育模式和方法也存在着很大的问题,不利于高职学生的就业竞争力和发展潜力的提升。文章分析了当前高职数学教育存在的问题,针对这些问题提出了改革的建议。
关键词:高职 数学 改革
随着高职教育的快速发展,大力发展职业教育,努力推行工学结合、校企结合的教学模式,强化实习、实训、实践教学,突出实践能力的培养,已成为高职教育的改革方向。各高职院校积极进行教育模式的改革,课程设置改革,大大压缩了理论教学时数,加大了实践教学力度。与此同时,高职数学教学中也出现了一种非常极端的倾向,认为文科高职数学完全没有必要,工科高职数学可有可无。因此对数学教学进行了颠覆性的改革,能砍则砍,砍不掉的也只是一种形式的应付,于是数学在学生心目中变成了一门既枯燥又没用的课程,数学课程在学校的地位一落千丈。我们认为目前高职数学教学的确存在着很多需要变革的方面,改进传统的教学理念和教学方法势在必行,教学内容的重新组合与调整、课程设置的改革也是当务之急,但是认为数学教学可有可无未免有些过于极端。
一、 高职数学教育存在的问题
在数学教育中同一个专业,执行一个标准。同一专业学生的数学基础差距很大,随着时间的推移,这种差距还在继续扩大。如果执行同一标准,两极分化相当严重,而数学教育又要求学生成绩呈正态分布,于是,有学者提出了分层教学法。但是数学教育分层教学法的分层依据很难把握。目前采用的分层方法主要是根据学校设置实验班人数划定分数线,这种划分与企业的需求是否匹配?实验班的教学内容与普通班的教学内容的差异也很难确定。同时,这种方法不利于充分发挥学生的积极性,因为一开始就把学生分为三六九等,学生不能享有平等的教育机会和教育资源,更存在挫伤学生的自尊心的可能。而且当前的数学教育教学方法的选取面临困难。人们一直提倡数学教师在教学方式上要注重“启发式”,摒弃“灌输式”。“启发式”教学优越于“灌输式”教学已成为共识,然而其“优越”需要前提——要求学生有较强的自律性、目标感和抗外界干扰等特点,但这常常被教师所忽略。数学素质相对高的学生仅占少数,他们具有这些特点“,启发式”教学明显对他们有利;对大多数数学素质一般的学生“,启发式”教学对他们常常“启”而不“发”,浪费时间并一无所获,所以“启发式”教学应当是适合少数学生的教学方式。同时,“启发式”教学对教师也有较高的要求,要求教师把握学生的学习情况,熟悉教学内容,如学生展开讨论,教师如何评价与总结;学生不能回答相应问题,教师如何进一步启发学生,等等。
高职数学知识教育只局部的看到数学的知识,而看不到数学的形成发展过程以及人类创造科学的精神和蕴含丰富的人文思想的数学文化。实际上,知识只能是其文化整体的一部分,数学知识是数学发展形成过程中整个数学文化的一种结晶,而数学文化还包括数学的思想、方法与精神,还包含人类创造知识的源泉。在人类数学文化发展的历史过程中,数学的知识作为一种文化的结晶而传播,但在这种数学知识的传授中,数学的思想方法,数学家的创造精神往往介绍的较少。这种教育观从根本上切断了知识与文化的联系,脱离了产生和滋润它的整个数学文化的母体,从而难以发挥培养学生的数学素养的主体作用。所以,高职数学教育不应当只是一种作为知识的数学教育,而应当是一种涵盖高职数学知识在内的高职数学文化教育。
二、高职数学教育改革的建议
第一,将高职数学教育内容从数学知识拓展到数学文化。在高职数学文化教育的视野下,高职数学教育只有根植于深厚的数学文化土壤中,才会枝繁叶茂,开出绚丽的花,结出殷实的果。而脱离与之相连的文化命脉,数学将不再有血有肉,数学的教育将变得空洞和教条,数学的知识将变得枯燥和乏味。高职数学文化教育不仅要给学生以有用的知识,更重要的是通过这些知识载体,使学生了解数学的思想、方法和精神,学会用数学方式的理性思维观察、分析和解决问题。在高职数学文化教育的视野中,数学知识是数学文化不可分割的重要组成部分,它是传播数学文化的重要载体。因此,学习数学,不仅要学习作为知识的数学,而且更要学习数学文化中包括数学家的理想、信念、精神境界、价值观和人生观;特别是要切身感悟数学家如何创造数学及数学对自身及人类社会发展的意义等等。要让学生接受数学文化的熏陶,从中逐步学到从事科学、工作所需要的数学思想、方法和精神,从而真正全方位地提高自身的数学素养。
第二,把学生的全面发展作为数学教学的着力点高职教育培养的是德、智、体、美等全面发展的专业技术人才,数学在学生全面素质教育中所起的特殊作用远非各种专业课程所能相比。但由于对数学教学必需和够用为度的教学原则理解过于片面,受实用主义的影响,在数学课程的内容选取和课程设置上,忘记数学是一个有机整体,只想给学生有用的东西,把数学知识体系搞得支离破碎,学生对所学的内容往往知其然而不知所以然,学生没有得到严格的数学训练。数学教学内容不仅是一个数学知识的逻辑体系,更重要的是通过知识反映它所包含的数学思想方法,反映它的文化价值。数学学习的过程是知识获得与观念形成同时发生的过程。学生学数学,不单单是学知识,更要学数学中的思想方法,形成正确的数学观念。
第三、充分体现以应用为目的的教学原则传统的高职数学教学中,往往只注重定理的证明、公式的推导、解题技巧的训练,而忽视或轻视了数学在实际中的应用,学生能够较熟练地解题,却不能将所学的数学知识去解决专业中的实际问题。学生不明白数学与自己所学专业之间的联系,这也是学生数学学习热情不高的主要原因。解决上述问题的一个重要的途径就是要结合专业来讲清概念,概念的引入要尽多采用与专业有关的例子,并坚持概念教学以应用为目的原则。例如讲解导数概念时,从变速直线运动的瞬时速度、平面曲线切线的斜率等问题中抽象出导数概念后,不能只偏重于求导公式的推导与运算,而应该再用导数概念来剖析实际生活中的变化率模型,如边际成本模型、化学反应速度模型等,做到概念的形成源于实际,高于实际,又要立足于解释实际。