张照艳,葛 炬
(新疆农业大学 机械交通学院,新疆 乌鲁木齐 830052)
物流用地是各种物流功能及设施的空间载体,是指服务于不同物流功能,涉及现有不同城市用地类型的特定用地组合,其实质是承载物流设施的城建用地的总称[1]。
物流用地规模预测是物流园区空间布局及用地模式确定的主要依据。物流园区的规模确定是物流园区规划建设中的一项十分重要的内容,目前国际上还没有一套较为成熟的物流园区规模确定方法[2-3]。
影响物流用地规模的因素很多,就当前诸多研究资料显示,关于物流用地及其规模预测的深层次研究以及预测物流用地规模的方法主要集中在产业经济学和运输学当中,而在管理学领域以及城市总体规划中的物流规划专业领域鲜有涉及。
就目前研究物流用地规模的现状而言,已有部分专家学者定量地提出了具体预测物流用地规模的模型。这些模型之间算法独立,涉及的理论依据和考虑的决定性因素各不相同。因此,各类模型预测的物流用地规模具有显著差异。本文从现有模型的初始条件、理论依据、适用对象等方面进行分析,找出其内在联系和实质,从而对各类模型的优缺点和适用性进行分析,并将这些模型归类和比较,提出一种复合的方法,使物流用地规模的预测方法在理论上更为合理和适用,有利于提高预测的精确性。
本文对现有的常用预测模型按照其功能定位进行以下三个方面的分类。
2.1.1 比例汇总模型。李玉民提出的比例汇总法[4]根据历年公路、铁路、水运、航空的货运量预测目标年份货运量,然后依据历年公路、铁路、水运、航空的流向按比例分摊预测出各个运输方式在物流通道上的流向比例,最终再按通道汇总得出总规模。
模型总体思路是先将各运输方式按流向比例分担,再将各运输方式按物流通道汇总,最后得出物流用地总规模。此方法的优点是能够充分考虑到各运输方式在物流用地中发挥的作用;缺点是计算时为获取准确的统计数据耗费人力物力较大,各运输方式的预测货运量要与各物流通道上按比例分担的量相协调,并要满足总量控制的原则,导致限定运算条件过多,运算困难。因此,比例汇总法适用于物流用地总体规模已经确定,物流园区大多数分布在城市的物流通道上,并且园区之间基本没有交换的物流量的物流用地规模预测中。
2.1.2 需求计算模型。城乡规划设计研究院的曾海川、王岳丽[5](2009)运用需求计算法预测物流用地规模。其计算步骤是:①测算城市货物运输量(a.对外交通运输货物量;b.城市内部交通产生的货物运输量);②预测城市全社会库存总量(a.对外交通所有进出城市货物产生的库存量;b.城市内部货运产生的库存量;c.物流设施内部重复库存量);③对社会公共物流设施规模进行计算 (a.将适合进入社会公共物流设施的库存列入计算,将不适合的予以扣除;b.企业自有物流即不采用3PL时,应综合考虑企业自我服务比例及库存对设施的需求程度;c.推算社会公共物流比例);④最终将计算结果叠加得到物流用地总规模。
此模型是将物流用地规模分为城市货运总量所占规模、库存总量所占规模以及社会公共物流所占规模,分别计算后再累加即得到物流用地规模。其优点是计算简捷,可操作性及实用性较强,得到的结果相对较为准确;缺点是计算局限性较大,通用性较差,只在其适用的范围内具有较强的操作性。因此,需求计算法只适用于煤炭、原油、矿石、砂石、散粮等大宗散货的行业特点明显及国家政策限制较大,并且仍应用传统运输方式解决货物运输及配送的行业。
2.1.3 时空消耗模型。北京工业大学程世东[6](2005)针对物流用地规模在深入研究了物流系统结构后提出了时空消耗模型。时空消耗法的数学模型为,其中,n为货物种类数;Vi为单位货物平均所占体积;Ti为货物平均周转时间;Fi为货物i的时间相关系数;Qi为货物年周转量,即园区的年物流量;Si为每平方米仓库所能存储货物i的体积;a为物流园区面积与仓储面积的比值;A为物流园区理想规模。
运用此模型的优点是物流园区所能够最大限度提供的时空资源和货物所需要的时空资源可以保持平衡。模型深入物流系统将结构细化分解,从而将货物运输分为长途运输和市内配送,进而准确定位物流园区的功能,精确确定模型各个参数,最终得到精准计算结果。如此精密的计算模型也有其不足之处,首先过于微观且参数变量过多,精准确定这些参数非常困难;其次确定参数后数据获取较为困难,耗费人力物力较多。由于各个参数是物流用地规模的决定性因素,而物流的发展水平对这些参数影响较大,因此,有利于计算物流发展水平较高的地区。
2.2.1 主题定位与多模型定量分析的模型。城乡规划设计研究院的吴琳、沈德熙[7](2009)在分析了部分专家预测模型之后,提出定性与定量相结合,主体定位与多模型分析的新型模型。主体定位强调采用已有研究成果,以战略定位为主导,定性分析(SWOT分析)作辅助,将总体物流产业与物流园区的发展加以定位;模型定量分析则是结合大量主体定位分析基础数据,以定量分析为主导,定性分析作辅助的预测方法,最终确定物流用地发展规模。
此模型的优点是融合多数专家研究结论,拥有较强的理论支撑,能够较全面客观地分析定位物流用地周围环境,适用范围较广;缺陷是运算过程复杂且主观因素较多,预测结果不精确。因此可用于多数物流用地规模的估算。
2.2.2 类比分析模型。何国华提出类比分析法[8]将城市经济与物流需求规模列入对比指标,参考国内外较发达地区的物流用地内部基础设施运行规模,推算本城市物流用地内部基础设施布局的方法。此模型因地区差异可按不同比例类推,数学模型为S1=S2*G1G2=S2*Q1Q2,式中,S为城市物流基础设施面积,G为城市区内生产总值,Q为城市物流总量。
运用此模型优点是操作简捷,具有较强的宏观指导性和参照性;不足之处在于因运算过于粗糙而忽略了本地区部分实际影响因素,运算过于生搬硬套。适用于物流发展比较成熟或者发达地区。
2.3.1 参数法模型。东南大学李玉民、李旭宏等(2004)从实物量的角度给出物流用地规模经验预测方法即参数法,并给出模型中各个参数确定方法[4]。
参数法数学模型为:s=αβQε 365,其中S表示所求物流用地规模;α、β分别表示分配系数和适站系数,α为单个物流园所处理的物流量/城市所有物流园处理物流量,β为进入物流园的物流量/城市总物流量;Q为城市物流需求量,表示城市物流作业总量,通常用社会货运总量代替;ε为单位生产能力用地参数,表示日处理1吨货物需要的物流基础设施面积。
α分配系数是城市整体物流园中目标物流园所承担的作业量,主要由物流园综合基础设施条件决定,物流园综合基础设施条件越好,分配系数α越大,反之越小,城市中每个物流园区分配系数相加等于1。
适站系数β与城市物流业发展程度相关,3PL比例越低,城市物流业发展程度就越低,进入物流园区的物流量比例就越低,β取值就小;反之β取值就越大。一般适站系数β取值在0.2~0.4之间,物流相对发达、规划期限相对较长取值就大一点,反之取值就小一点。
ε取值与作业特点、品种品类、物流园作业类型、建设强度及集约化程度相关。一般情况下,仓储型物流园中产品占地面积越小,建设强度越高,集约化程度越高,货物周转期越短,周转次数越多,周转量越大,生产能力用地参数ε取值就越小,反之,取值就越大。ε取值范围一般在40m2/t~60m2/t之间。
运用参数法的优点是有现有公式,只需确定式中所包含的各个参数即可得到结果,主观因素少,易于量化,可操作性较强;缺点是:首先各个参数值不易确定且难度较大,要综合考虑物流用地的各个因素,其次在计算前须先确定货运总量,用货运总量来替代物流需求量,虽然便于运算,但是预测不准确。因此,此方法适用于物流用地总规模已经确定的预测类型。
2.3.2 多指标群决策模型。东南大学陶经辉、毛海军、李玉民、李旭宏[9](2005)提出了基于专家群决策理论的模型。此模型以按比例分摊的方法确定物流用地规模,其运算步骤是:①选择合适的专家组;②计算各个专家判断矩阵的权重向量;③各个专家权重向量集成;④由选择的专家组对物流用地的各个指标计算评分;⑤专家组对物流用地综合评分;⑥将得到的权重向量与评分向量相乘。最终经过一系列的评分得到预测规模。
多指标群决策法的优点是有较强的立论依据,计算准确性、可操作性及实用性较好;缺点是主观因素及涉及人员较多,计算过程复杂,确定结果时间较长。适用于物流发展比较成熟且相关物流园区面积已经确定的物流用地规模的预测。
2.3.3 规范推算模型。城乡规划设计研究院的曾海川、王岳丽[5](2009)运用规范推算法预测物流用地规模。此模型将物流用地按功能用途分为以下三个部分:①地区性物流用地(物流园区及物流中心用地);②生产性用地(与工业区结合,服务半径3~4km,服务面积28~50km2,用地规模可按每处6~10hm2估算);③生活性用地(对应于配送中心,服务半径2~3km,服务面积13~28km2,用地规模可按每处不大于5hm2计算)。将这三部分用地分别计算再叠加即可得到物流用地总规模。
此模型依据城市规划确定城市物流用地总规模,依据工业用地规模推算配送中心面积,最后确定物流园区与物流中心面积。其优点在于计算简捷,可操作性较强;不足之处是没有充分考虑到未来需求量增量,不具有前瞻性,且与物流园区内货运量毫无关联,所预测的服务半径,服务面积,用地规模范围过于生硬,误差较大,不足以精确反映具体实际情况。所以,此模型适用于估算物流用地规模。
由上述分类可知各类模型互不关联,适用范围各异。在特定范围内都有各自的优缺点,以至于不能形成一个统一的运算模型在任意环境中都能通用。本文认为参数法与时空消耗法具有较强的实用性和较好的预测精度,由此分析了参数法和时空消耗法预测模型,并将两种模型加以复合,以期在将来实践中能形成统一通用计算模式,减小误差,提高计算结果精准度。
同一物流用地规模预测中往往包括诸多因素,运用单一模型不能够全面考虑到所有影响因素,必然会影响预测结果准确性。由此,可以运用两种或多种模型同时预测,起到相互检验提高精准度的作用。
参数法与时空消耗法属性截然不同,参数法以整体物流管理为目标,运算涉及分配系数、适站系数、城市物流需求量、单位生产能力用地参数等因素;而时空消耗法则以交通运输理论为依据,运算包含货物种类、单位货物平均所占体积、货物平均周转时间、货物时间相关系数、园区年物流量、每平方米仓库所能存储货物体积、物流园区面积与仓储面积的比值等相关因素。由此可见,参数法和时空消耗法所涉及的因素各有特点,互不相同(见表1)。因此,在计算时要综合全面地考虑这两种模型所涉及的影响因素,使所涉及的因素范围具体化,数据精确化。整个运算过程中两种模型可以相互检验其所包含的因素,提高预测精准度。
参数法的优点和时空消耗法类似都是有现有公式,只需确定式中所包含的各个参数即可得到结果,主观因素少,易于量化,有较强的理论支撑和可操作性,微观层面上精确可行。但是也有其共同缺点,参数法能够在一定的范围内作出相对准确的结果,然而公式中各个参数不易确定,时空消耗法过于微观且参数变量过多,精准确定这些参数非常困难;其次,确定参数后数据获取较为困难,耗费人力物力较多。由此可看出,两种方法计算困难都是在参数的范围之上,而参数法则适用于物流用地总规模已经确定的预测类型,时空消耗法则由于各个参数是物流用地规模的决定性因素,而物流水平发展程度对这些参数影响较大,有利于计算物流发展水平较高的地区(见表2)。因此,参数法与时空消耗法可以在其优缺点基础上相互检验,扬长避短,提高预测精准度。
表1 参数法与时空消耗法因素对比表
表2 参数法与时空消耗法优缺点对比表
参数法和时空消耗法作为预测物流用地规模的两种模型,单独运用都能得到比较合理的结果,但为了使预测结果更加精确,可以将参数法和时空消耗法加以复合,并相互校验,提高预测精确性。由此,在物流用地总规模已经确定的情况下,可以先运用时空消耗的模型进行预测,再运用参数法模型对时空消耗法的预测结果进行校验;而在物流发展水平较高的地区,则可以先运用参数法进行预测,而后运用时空消耗的模型对参数法的预测结果进行校验。
运用此方法预测物流用地规模,其优点是在原有单一运算的基础上,将两种预测模型共同优点加以放大,并在计算过程中相互检验,此种方法兼顾参数法和时空消耗法的优点与缺点,使得计算结果更加准确。最终两种模型双管齐下,得到比较精确的结果。但是此方法也有不足之处,两个模型的参数不易确定,数据不易获得,因此适用于资源比较充足的物流用地规模的预测。
物流用地规模预测是物流园区及物流中心规划中的核心问题。参数法和时空消耗法是目前预测精度比较准确的方法,但是要提高物流用地规模预测精确度,就不能只运用单一预测模型。本文提出的参数法和时空消耗法相复合的方法,综合考虑了参数法模型和时空消耗模型各自的特点,并将这两种模型的参数及运算过程进行综合分析,最后相复合的方法。这种复合方法能够提高物流用地规模预测的精确性和适用性,从而做到合理规划物流用地规模,减少因预测不精确而导致物流用地不足或资源浪费等问题。
[1]吴娜,于东.物流用地分类研究[J].四川建筑,2009,29(4):16.
[2]Linda K Nozick,Mark A Turnquist.Inventory,Transportation,Service Quality and the Location of Distribution Centers[J].European Journal of Operational Research,2001,129:362-371.
[3]St Quintin.Trends in European Logistics Activity:Location and Property Aspects[M].London,1996.
[4]李玉民,李旭宏,毛海军,等.物流园区规划建设规模确定方法[J].交通运输工程学报,2004(2):76-79.
[5]曾海川,王岳丽.城市物流设施用地规模控制研究[J].城市交通,2009,7(5):8-11.
[6]吴琳,沈德熙.城市规划视野下的物流园区规模预测——以济南市为例[J].现代城市研究,2009(7):33-38.
[7]陶经辉,李旭宏,毛海军,等.基于多指标群决策的物流园区规模确定方法研究[J].公路交通科技,2005,22(1):84-87.
[8]程世东,刘小明.时空消耗法求解物流园区规模[J].公路交通科技,2005,22(8):142-144.
[9]何国华.城市总体规划中物流园的用地规模问题[J].规划广角,2008,3(24):64-65.