杨仁超 李进步 樊爱萍 宗 敏 张 涛
(1.中国石油化工股份有限公司石油勘探开发研究院 北京 100083;2.山东科技大学地质科学与工程学院 山东青岛 266590;3.中国石油长庆油田公司 西安 710021;4.中国石油化工股份有限公司华北石油局录井公司 郑州 450006)
沉积物物源分析包括古侵蚀区的判别、古地貌特征的重塑、古河流体系的再现、物源区母岩的性质的追踪、气候以及沉积盆地构造背景的确定等,是盆地分析的重要内容;随着地质科学理论的进步和多种现代分析测试手段的提高,物源分析已成为沉积学研究的重点课题之一[1~6]。通过物源分析,既可了解物源区经历的地质演化过程,借助单颗粒矿物同位素测年技术,还可描述遗失的源区年代史[7]。确定物源区的地理位置、母岩性质及其组合特征、沉积物搬运路径与距离,开展物源分析研究,不仅是物源区大地构造背景分析、地壳与大地构造演化恢复、古环境与古气候恢复的重要途径[8~10],而且是沉积区岩相古地理重建、原型盆地恢复、沉积盆地分析、沉积矿床预测的重要依据[11~14]。物源分析还可作为连接沉积盆地与造山带的纽带和盆山耦合研究的切入点[15];因此,开展陆源沉积岩物源分析具有重要的科学意义。
物源分析作为沉积地质学研究的热点问题之一,多种分析方法在应用中得以不断改进和创新。目前国内外常用的物源分析方法主要有以下几种:
沉积学法主要依据沉积学原理,对碎屑岩进行物源分析,如根据碎屑岩粒度由物源向盆地方向逐渐变细、地层厚度变大[16]、砂/地比值向盆地中心方向总体呈降低趋势;古流向测量及玫瑰花状图[17,18]、古地貌分析[19]、结合沉积相分析结果判断物源。根据地层等厚图、沉积相展布图等相关图件,可推断出物源区的相对位置,结合岩性、成分、沉积体形态、粒度及古流向等资料,使物源区分析更可靠。但由于古流向具较大的分散度,故上述标志均具有较大的局限性和不确定性,必须做大量的野外观测和资料统计,方能获取较客观的古水流与物源方向信息。沉积学方法的优点是直接、有效、花费小,但不足之处在于统计工作量较大,且仅能判断物源的大致方向,不能确定物源区的具体位置、母岩性质等具体信息。
根据盆地陆源碎屑岩来自母岩的陆源碎屑组合可以推断物源区母岩类型。尤其是砂砾岩中的砾石成分,可反映基底和物源区母岩的成分,也反映磨蚀的程度、气候条件以及构造背景。因此,砾石的各种特征是判断物源区、分析沉积环境的直接标志[20,21]。Dickinson等依据大量的砂岩碎屑成分统计数据,建立了砂质碎屑矿物成分与物源区之间的系统关系,绘制了多个经验判别三角图解(Q—F—L,Qm—F—Lt,Qp—Lv—Ls,Qm—P—K 等)[22],至今仍然被广泛应用物源区的构造背景分析[23,24],但是该方法未考虑混和物源以及风化、搬运和成岩作用等作用的影响,在应用过程中也曾出现与实际情况不符的情况[15]。
传统的岩石学研究手段在物源分析中仍可发挥重要的作用,如偏光显微镜可直接鉴定沉积物中的岩屑,是物源的直接标志之一。对岩石中主要造岩矿物发光性的研究有助于判别沉积环境和岩石的成因,碎屑颗粒的发光分析可用于物源分析,碎屑岩中常见的石英、长石和岩屑多随物源变化而具有不同的发光特征,故依据碎屑颗粒在阴极光激发下的颜色特征也可分析物源[25,26],但阴极发光对物源的判断受到经验和较多随机因素影响。
物源分析可用砂岩的重矿物组合、ATi(磷灰石/电气石)—Rzi(Ti02矿物/锆石)—MTi(独居石/锆石)—CTj(铬尖晶石/锆石)等重矿物特征指数、以及锆石—电气石—金红石指数(ZTR指数)来指示物源[27,28]。时代较老的沉积物,重矿物自保存至现今,会因温度、埋深等条件的不同而使其种类增多,含量分布较分散,保留源岩的信息减小,对判断物源不利。因此,沉积物时代越新,利用重矿物判断物源的准确性会越高。同时,水动力会影响沉积时重矿物性质,重矿物组合分析法对源区的精确判别仍存在一定缺陷,对于碎屑重矿物组合在物源分析中的应用,应注意不稳定重矿物的组成,因为在某种程度上,不稳定重矿物才具有判别意义[29]。随着电子探针的应用,一些学者利用单矿物(如辉石、角闪石、电气石、锆石、石榴石等)的地球化学分异特征来判别物质来源[30,31],如利用石榴石电子探针分析结果来研究物源有其独到的优越性,可使水动力或成岩作用的影响降低到最小[32]。
元素地球化学已成为地质构造复杂地区研究的有效手段[33],元素地球化学法已被国内外学者广泛运用,包括常量元素、特征元素及其比值法、微量元素(含稀土元素)法[34~37]。一些元素在母岩风化、剥蚀、搬运、沉积及成岩过程中不易迁移,几乎被等量地转移到碎屑沉积物中,故可被作为沉积物物源的示踪物,如 Th、Sc、Al、Co、Zr、Hf、Ti、Ga、Nb 及稀土元素(REE)等,尤其是其中的REE因其具有特殊的地球化学性质而在物源示踪中运用很广[38]。
保存在沉积物(岩)中的环境和物源信息,可用多种元素地球化学方法释读,如通过研究元素的组成、组合、相对含量、分布规律、比值关系、多元图解、配分模式,以及元素与同位素的关系等,进行物源示踪。作为古环境分析的替代性指标,研究元素在表生环境下的地球化学行为,可在示踪古气候、沉积物来源、沉积环境和古海洋学事件等领域发挥有效的指示作用[39]。在某种程度上,沉积物成分特征和地球化学特征是物源和沉积盆地大地构造背景的函数[7],通过对砂岩的研究,提出一系列常量、微量元素地球化学端元判别图及稀土元素地球化学模式判别图,用来鉴别不同源区的构造背景,这些方法已被我国学者广泛运用于大地构造背景的判别。
近年来,一些学者还利用电子探针、激光剥蚀等离子体质谱仪(LA—ICP—MS)、激光感生火化电感耦合等离子体质谱(LINA—ICP—MS)、电子顺磁共振(EPR)等成分分析仪器,测得重矿物中的常量元素、石英颗粒微量元素[40,41],根据矿物元素的组成、相对含量、元素的组合,建立多元图解和配分模式,用于物源分析和大地构造背景判别及沉积环境分析[42~44]。大多数特征元素均受成岩作用的影响,导致物源判别结果出现多解性,而选择化学性质相近、相关性强、在沉积成岩过程中富集程度相似的特征元素比值作为物源示踪指标,能够有效地避免成岩作用的影响[45]。
在不发生重结晶的情况下,石英在搬运、沉积和成壤过程中,它的氧同位素比值(δ18O)不发生改变,能够保存源岩形成环境等信息[46],因此沉积物中石英的δ18O值可以用来探讨石英的形成环境、追踪物源区和母岩的特征[47]。
元素地球化学分析物源兼具有效、经济、定量等优点,既适用于富含基质的砂岩和页岩,又可确定物源的年龄和地球化学演化历史[11];并可有效的避免水动力因素的影响[38]。元素地球化学分析建立在沉积物对母岩的主元素组合的继承性基础上。但应该注意到主元素的活动性和可迁移性,原则上只是在短距离搬运和化学风化很弱的条件下才具有较好的可比性。化学变异指数(CIA)提供了一种定量硅酸盐矿物风化度的方法[48~51]。同时在进行元素组合分析时,还要考虑到搬运过程中的稀释作用,即应注意相对含量而非绝对含量。
单颗粒碎屑矿物的同位素测年在物源分析中的应用方面,目前应用的方法主要有:碎屑颗粒的(磷灰石、锆石)裂变径迹测年法[52]、含铀微相(锆石、独居石和榍石)U—Pb测年法[53~55]、(碎屑云母和角闪石)40Ar/39Ar 测年 法[56]、Rb—Sr 法[57]、Sm—Nd法[58,59]、Sr—Nd 法[60]、87Sr/86Sr 法[61]、207Pb/206Pb[62]法等。
裂变径迹法分析物源区是利用磷灰石、锆石中所含的微量铀杂质裂变时在晶格中产生的辐射损伤,经一系列化学处理后,形成径迹,通过观测径迹的密度、长度等分布,并对其加以统计分析,从中提供与物源区的年龄及构造演化有关的信息。在物源研究方面,不仅可以利用同位素之间的相互关系来判别物源区,如利用绿帘石中的Nd和Sr同位素比值进行物源判别(幔源或壳源),更重要的是通过沉积物年龄的测定来判别物源[63]。
地球物理学在物源分析中的应用主要有测井地质学法和地震地层学法[64]。测井地质学法主要利用自然伽马曲线分形维数、地层倾角测井来判断物源方向[65,66];利用地震地层学确定物源和古水流方向也有成功的案例[18],如利用地震反射特征勾绘进积方向,详细刻画了北塘凹陷古近系沙三段古物源体系[67]。
泥岩的渗透率一般低于砂岩,在成岩过程中不易受到外来流体和物质的影响,故其在确定物源方面可能比砂岩有用。另外,碎屑粘土是泥岩中的独特组分,在确定物源和古气候方面有很大的应用潜力,尤其是在浅层沉积物的物源示踪及第四纪以来的气候变化研究方面应用广泛[68,69];还可利用 Al/Ca或高岭石/蒙脱石比值来判断物源方向和预测储层[70]。
借助于沉积物中微体化石的分析,以及泥质区正构烷烃、姥鲛烷、植烷、藿烷和甾烷等生物标志物的特征来判断有无陆源高等植物的输入[71],通过不同来源和成熟度的生物标志物,来判断沉积有机质与碎屑沉积物的来源。
磁性矿物学在物质来源鉴别方面发挥着重要作用,通过对环境物质进行磁性测量,分析磁性矿物的类型、组合、含量、粒度和晶畴等特征,可有效揭示物源信息[72]。与传统的研究方法相比,磁学手段具有样品用量少、灵敏度高、简单快速、非破坏性、信息量大等优点[73],而得以发展和应用。
近年来,重矿物颗粒表面结构分析对物源的指示意义也逐渐被重视。重矿物颗粒可以与石英一样进行矿物颗粒表面结构分析,借助扫描电镜可以揭示颗粒表面不同的结构组合,研究重矿物颗粒表面的形态可以确定物源及其运移过程[74]。因此不但可以通过矿物微区探针、化学组成和示踪元素来分析物源,而且可以由矿物表面形态判定沉积物在源区至沉积区搬运过程中的不同阶段并阐明影响矿物颗粒的不同过程。Cardona等[74]发现重矿物颗粒晶体表面的晶纹和形态不仅可进一步证实通过探针、地球化学和裂变径迹等方法获得的物源信息,而且还可以区分出重矿物的演化阶段并阐明矿物从开始搬运直到最终沉积,影响矿物颗粒的不同过程,并在研究Guadalete河流阶地时得到应用。
随着先进分析手段的使用,沉积物所携带的物源信息被大量挖掘,物源区资料的应用前景变得更为广阔,未来的发展呈现如下趋势:
早期的物源分析主要依靠沉积学、地层学、岩石学、重矿物等方法;虽然传统的方法依然有效,但现在更多的依赖于扫描电镜、阴极发光、X衍射、电子探针、能谱分析、电子探针及激光剥蚀等离子体质谱仪(LA—ICP—MS)、激光感生火化电感耦合等离子体质谱(LINA—ICP—MS)、电子自旋共振(ESR)测年、电子顺磁共振(EPR)等现代分析测试技术的综合运用[75~80]。
物源分析正从早期单一方法到多方法的综合运用、从单一学科走向多学科联合交叉转变,如岩石特征—重矿物—全岩主量元素—微量元素—稀土元素组合[81],岩石学数据—古水流数据—岩石化学[82]组合、重矿物—元素地球化学—同位素年代地质学组合[83~86]、同位素地球化学—粘土矿物学的组合[58]、重矿物—石榴石地球化学—古流向的综合运用等[87]。在地质工作者不懈的努力和探索中,随着现代测试技术的不断提高,物源分析方法将会更加完善和丰富.由定性分析走向定量分析,由单一方法走向多学科多方法的综合运用,这将是物源体系分析的未来发展方向[88]。
定量物源分析(QPA:quantitative provenance a-nalysis)是定量地评价从可识别的物源区到盆地充填过程中的碎屑物质类型、数量及供给速率[89]。随着先进分析手段,如电子探针、离子探针、等离子质谱技术以及同位素测年等的应用,从定性到定量是物源分析的必然趋势。现代分析测试技术、数学定量模型[90]和计算机技术的提高[91]为定量物源分析提供了发展机遇[92~93]。沉积物(特别是单颗粒矿物)所携带的物源信息的大量挖掘变得可行,物源区资料的应用前景也更为广泛。
在定量研究方面,已发展出两个分支:一是模式识别,如判别分析、模糊聚类、神经网络识别[94];另一分支则基于“质量守衡”原理,通过数理统计方法实现物源的定量识别[89],提出了物源定量识别的非线性规划数学模型,并利用模型计算了东海陆架北部表层沉积物细粒级部分之长江、黄河物源的贡献量。
在国内外广大学者的不断探索和实践中,有关物源分析的新技术新方法层出不穷。如最新的研究结果显示,Hf同位素[2,3]与斑脱土化学特征[95]被作为物源变化的标志首次应用于物源分析;磁性矿物包裹体及磁学手段被不断发展和应用[72,73];近年来,石英颗粒[96]及重矿物[74,97]的显微晶面形貌特征对物源的指示意义也被成功应用。
构造运动对物源位置、物质成分及结构、搬运路径、甚至最终的沉积位置等方面有明显影响,构造抬升可以使物源区发生变化,可造成地层岩石碎屑组分及年龄分布范围加大;走滑断层可使某一时期沉积物与源岩发生长距离侧向位移,造成沉积体系的不连续及其与源区的分离;逆冲推覆作用可使源岩消失殆尽或仅留残片[7],都会增加物源分析的难度,故物源分析必须结合其构造背景、构造运动的特点。
虽然物源分析在上述各个方面取得了重要的进展,但目前仍然存在一些问题尚待解决,如:哪种沉积物或元素对环境的变化最为灵敏?如何确定再旋回石英颗粒的物源?搬运路径中的沉积体系构型较少涉及;机械沉积分异作用和化学沉积分异作用对母岩和沉积岩(物)造成的成分差异未被评估;在每个沉积阶段,母岩在被风化侵蚀过程中,矿物种类、组分的改变或溶解对物源分析所造成的影响需要评估;这些因素对物源分析结果均会产生一定影响,如何量化这些因素,目前的研究基础较薄弱。物源区分析往往是基于碎屑组分、化学成分或年龄等与可能物源区的对比,往往仅具有统计意义。因此,深入了解区域地质背景,把握物源区与沉积区的构造活动和演化历程,大量收集可能的物源区的地质信息,在此基础上,结合一定数量的样品测试,进行数据统计分析,才能得出理想的物源分析结果。
作为沉积盆地分析的重要内容之一,陆源沉积岩物源分析不仅是古地貌的重塑、岩相古地理重建、原型盆地恢复、沉积盆地演化再现、盆地沉积格局与沉积体系分析、沉积矿产预测、油气储层预测、母岩性质追踪的重要依据,而且是物源区大地构造背景分析、地壳与大地构造演化恢复、古环境与古气候恢复的重要途径,还可作为连接沉积盆地与造山带的纽带和盆山耦合研究的切入点。陆源沉积岩物源分析将在未来的地质研究、沉积矿产预测和勘探中发挥重要的作用,并倍受大地质工作者关注。在科学理论不断进步、科学仪器日新月异、新技术方法层出不穷的新时代,陆源沉积岩物源分析也必将迈入快速发展的新纪元。
References)
1 Rodrigues J B,Pimentel M M,Dardenne M A,et al.Age,provenance and tectonic setting of the Canastra and Ibiá Groups(Bras lia Belt,Brazil):implications for the age of a Neoproterozoic glacial event in central Brazil[J].Journal of South American Earth Sciences,2010,29(2):512-521
2 Bahlburg H,Vervoort J D,Dufrane S A.Plate tectonic significance of Middle Cambrian and Ordovician siliciclastic rocks of the Bavarian Facies,Armorican Terrane Assemblage,Germany-U-Pb and Hf isotope evidence from detrital zircons[J].Gondwana Research,2010,17(2-3):223-235
3 Xiaoping Long,Chao Yuan,Min Sun,et al.Detrital zircon ages and Hf isotopes of the early Paleozoic flysch sequence in the Chinese Altai,NW China:New constrains on depositional age,provenance and tectonic evolution[J].Tectonophysics,2010,480(1-4):213-231
4 Jimin Sun,Xiangkun Zhu.Temporal variations in Pb isotopes and trace element concentrations within Chinese eolian deposits during the past 8 Ma:Implications for provenance change[J].Earth and Planetary Science Letters,2010,290(3-4):438-447
5 Deru Xu,Xuexiang Gu,Pengchun Li,et al.Mesoproterozoic-Neoproterozoc transition:Geochemistry,provenance and tectonic setting of clastic sedimentary rocks on the SE margin of the Yangtze Block,South China[J].Journal of Asian Earth Sciences,2007,29:637-650
6 Udo Z,Luis A.Spalletti.Provenance of the Lower Paleozoic Balcarce Formation(Tandilia System,Buenos Aires Province,Argentina):Im-plications for paleogeographic reconstructions of SW Gondwana[J].Sedimentary Geology,2009,219(1-4):7-23
7 徐亚军,杜远生,杨江海.沉积物物源分析研究进展[J].地质科技情报,2007,26(3):26-32[Xu Yajun,Du Yuansheng,Yang Jianghai.Prospects of sediment provenance analysis[J].Geological Science and Technology Information,2007,26(3):26-32]
8 汪正江,陈洪德,张锦泉.物源分析的研究与展望[J].沉积与特提斯地质,2000,20(4):104-110[Wang Zhengjiang,Cheng Hongdei,Zhang Jinquan.Formerly sedimentary facies and palaeogeography[J].Sedimentary Geology and Tethyan Geology,2000,20(4):104-110]
9 李曰俊,孙龙德,龚福华,等.藏北查桑上三叠统复理石沉积大地构造背景的初步探讨[J].岩石学报,2000,16(3):443-448[Li Yuejun,Sun Longdei,Gong Fuhua,et al.A preliminary study on the tectonic setting of Upper Triassic flysch at Chasang,North Tibet[J].Acta Petrologica Sinica,16(3):443-448]
10 李双应,李任伟,王道轩,等.大别山北缘凤凰台组砾石地球化学特征及源区构造环境[J].沉积学报,2005,23(3):380-388[Li Shuangying,Li Renwei,Wang Daoxuan,et al.Geochemistry of the conglomerates and the tectonic setting of their provenance in Fenghuangtai Formation in the north margin of the Dabie Mountains[J].Acta Sedimentologica Sinica,2005,23(3):380-388]
11 杨江海,杜远生,朱杰.甘肃省景泰正路下志留统复理石杂砂岩沉积地球化学特征[J].地质科技情报,2006,25(5):27-31[Yang Jianghai,Du Yuagsheng,Zhu Jie.Geochemical characteristics of the Lower Silurian Flysch Greywacke in Zhenglu,Jingtai County,Gansu Province[J].Geological Science and Technology Information,2006,25(5):27-31]
12 赵红格,刘池洋.物源分析方法及研究进展[J].沉积学报,2003,21(3):409-415[Zhao Hongge,Liu Chiyang.Approaches and prospects of provenance analysis[J].Acta Sedimentologica Sinica,2003,21(3):409-415]
13 林畅松.沉积盆地的构造地层分析——以中国构造活动盆地研究为例[J].现代地质,2006,20(2):185-194[Lin Changsong.Tectono-stratigraphic analysis of sedimentary basins:a case study on the inland tectonically active basins in China[J].Geoscience,2006,20(2):185-194]
14 王世虎,焦养泉,吴立群,等.鄂尔多斯盆地西北部延长组中下部古物源与沉积体空间配置[J].地球科学,2007,32(2):201-208[Wang Shihu,Jiao Yangquan,Wu Yangqun,et al.Spatial combination of paleoprovenance and depositional lobe of Mid-Lower Yanchang Formation in the northwest of Ordos Basin[J].Earth Science,2007,32(2):201-208]
15 王国灿.沉积物源区剥露历史分析的一种新途径——碎屑锆石和磷灰石裂变径迹热年代学[J].地质科技情报,2002,21(4):35-40[Wang Guocan.A new approach to determine the exhumation history of the sediment provenance:detrital zircon and apatite fissiontrack thermochronology[J].Geological Science and Technology Information,2002,21(4):35-40]
16 薛云韬,罗顺社,雷传玲,等.泌阳凹陷南部陡坡带核二段物源及古水流研究[J].长江大学学报,2009,6(3):158-161[Xue Yuntao,Luo Shunshe,Lei Chuangling,et al.The study of material source and ancient water of Eh2in steep slope,south of Biyang Depression[J].Journal of Yangtze University,2009,6(3):158-16]
17 胡宗全,朱筱敏,彭勇民.准噶尔盆地西北缘车排子地区侏罗系物源及古水流分析[J].古地理学报,2001,3(3):50-53[Hu Zongquan,Zhu Xiaomin,Peng Yongmin.Analysis of provenance and palaeocurrentdirection of Jurassic at chepaizi regionin northwest edge of Junggar basin[J].Journal of Palaeogeography,2001,3(3):50-53]
18 姜在兴,邢焕清,李任伟,等.合肥盆地中—新生代物源及古水流体系研究[J].现代地质,2005,19(2):247-252[Jiang Zaixing,Xie Huanqing,Li Renwei,et al.Research on provenance and paleocurrents in the Meso-Cenozoic Hefei Basin[J].Geoscience ,2005,19(2):247-252]
19 邓宏文,郭建宇,王瑞菊,等.陆相断陷盆地的构造层序地层分析[J].地学前缘,2008,15(2):1-7[Deng Hongwen,Guo Jianyu,Wang Ruiju,et al.Tectono-sequence stratigraphic analysis in continental faulted basins[J].Earth Science Frontiers,2008,15(2):1-7]
20 Wandres A M,Bradshaw J D,et al.Provenance analysis using conglomerate clast lithologies:a case study from the Pahau terrane of New Zealand[J].Sedimentary Geology,2004,167(1-2):57-89
21 Noda A,Takeuchi M,Adachi M.Provenance of the Murihiku Terrane,New Zealand:evidence from the Jurassic conglomerates and sandstones in Southland[J].Sedimentary Geology,2004,164(3-4):203-222
22 Dickinson W R,Beard L S,Brakenridge G R,et al.Provenance of North American Phanerozoic sandstones in relation to tectonic setting[J].Geological Society of America,Bulletin,1983,94:225-235
23 任凤楼.合肥盆地中生界沉积物物源分析及构造意义[J].地质科技情报,2008,27(2):25-33[Ren Fenglou.Provenance analysis of Mesozoic Hefei Basin and tectonic significance[J].Geological Science and Technology Information,2008,27(2):25-33]
24 魏玉帅,王成善,李祥辉,等.藏南古近纪甲查拉组物源分析及其对印度-欧亚大陆碰撞启动时间的约束[J].矿物岩石.2006,26(3):46-55[Wei Yushuai,Wang Chengshan,Li Xianghui,et al.Provenance analysis of Paleogene Gyachala Formation in Southern Tibet:implication for the initiation of collision between India and Asia[J].Mineral Petrology,2006,26(3):46-55]
25 Götze J,Plötze M,Habermann D.Origin,spectral characteristics and practical applications of the cathodoluminescence of quartz-A review[J].Mineralogy and Petrology,2001,71:225-250
26 Carita A,Heinrich B.Cathodoluminescence spectra of detrital quartz as provenance indicators for Paleozoic metasediments southern Andean Patagonia[J].Journal of South American Earth Sciences,2003,16:15-26
27 Morton A C,Whitham A G,Fanning C M.Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea:Integration of heavy mineral,mineral chemical and zircon age data[J].Sedimentary Geology,2005,182:3-28
28 Li Renwei,Li Zhong,Jiang Maosheng,et al.Compositions of Juras-sic detrital garnets in Hefei Basin and its implication to provenance reconstruction and stratigraphic correlation[J].Science in China:Series D,2000,30(s1):91-98
29 石永红,李忠,卜香萍,等.博兴洼陷新生代砂岩碎屑石榴石的物源示踪及对鲁西隆起的指示[J].沉积学报,2009,27(5):967-974[Shi Yonghong,Li Zhong,Bu Xiangping,et al.Detrital garnets from Cenozoic sandstones across Boxing Sag for provenace indicator and its implication for the Luxi Uplift[J].Acta Sedmentologica Sinica,2009,27(5):967-974]
30 Morton A,Hallsworth C,Chalton B.Garnet compositions in Scottish and Norwegian basement terrains:a framework for interpretation of North Sea sandstone provenance[J].Marine and Petroleum Geology,2004,21(3):393-410
31 Sabeen H,Ramanujam M N,Andrew C M.The provenance of garnet:constraints provided by studies of coastal sediments from southern India[J].Sedimentary Geology,2002,152(3-4):279-287
32 杨丛笑,赵澄林.石榴石电子探针分析在物源研究中的应用[J].沉积学报,1996,14(1):162-166[Yang Congxiao,Zhao Chenglin.Application of electron microprobe analysis of detrital garnet to provenance studies[J].Acta Sedientologica Sinica,1996,14(1):162-166]
33 He Zhengjun,Li Jinzhi,Mo Shenguo,et al.Geochemical discriminations of sandstones from the Mohe Foreland basin,northeastern China:Tectonic setting and provenance[J].Science in China:Series D,2005,48(5):613-621
34 Friis H,Poulsen M L K,et al.Discrimination of density flow deposits using elemental geochemistry:Implications for subtle provenance differentiation in a narrow submarine canyon,Palaeogene,Danish North Sea[J].Marine and Petroleum Geology,2007,24(4):221-235
35 Yi Yan,Bin Xia,Ge Lin,et al.Geochemistry of the sedimentary rocks from the Nanxiong Basin,South China and implications for provenance,paleo-environment and paleoclimate at the K/T boundary[J].Sedimentary Geology,2007,197(1-2):127-140
36 Kasanzu C,Maboko M A H,et al.Geochemistry of fine-grained clastic sedimentary rocks of the Neoproterozoic Ikorongo Group,NE Tanzania:Implications for provenance and source rock weathering[J].Precambrian Research,2008,164(3-4):201-213
37 Dostal J,Keppie J D.Geochemistry of low-grade clastic rocks in the Acatlán Complex of southern Mexico:Evidence for local provenance in felsic – intermediate igneous rocks[J].Sedimentary Geology,2009,222(3-4):241-253
38 杨守业,李从先,张家强.苏北滨海平原全新世沉积物物源研究——元素地球化学与重矿物方法比较[J].沉积学报,1999,17(3):458-463[Yang Shouye,Li Congxian,Zhang Jiaqiang.Provenance study of Holocene sediments in Subei coastal plain:Comparison between elemental geochemistry and heavy mineral methods[J].Acta Sedimentologica Sinica,1999,17(3):458-463]
39 金秉福,林振宏,季福武.海洋沉积环境和物源的元素地球化学记录释读[J].海洋科学进展,2003,23(1):99-106[Jin Bingfu,Lin Zhenhong,Ji Fuwu.Interpretation of element geochemical records of marine sedimentary environment and provenance[J].Advances in Marine Science,2003,23(1):99-106]
40 Mcqueen K G,Pwa A,Van M J C.Geochemical and electron paramagnetic characteristics of quartz from a multi-stage vein environment,Cowarra gold deposit,New South Wales[J].Geochemical Exploration,2001,72:211-222
41 Tibi M,Heumann K G.Determination of trace elements in quartz glass by use of LINA-Spark-ICP-MS as a new method for bulk analysis of solid samples[J].Fresenius Journal of Analytical Chemistry,2001,370:521-526
42 Bhatia M R,Crook K A W.Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basin[J].Contributions to Mineralogy and Petrology,1986,92:181-193.
43 Renata C,Sulovsky P,Bruce A P.Major and trace elements in pyrope almandine garnets as sediment provenance indicators of the Lower Carboniferous Culm sediments,Drahany Uplands,Bohemian Massif[J].Lithos,2005,82:51-70
44 Blanco G,Rajesh H M,Gaucher C,et al.Provenance of the Arroyo del Soldado Group(Ediacaran to Cambrian,Uruguay):Implications for the paleogeographic evolution of southwestern Gondwana[J].Precambrian Research,2009,171(1-4):57-73
45 操应长,王艳忠,徐涛玉,等.特征元素比值在沉积物物源分析中的应用[J].沉积学报,2007,25(2):230-238[Cao Yingchang,Wang Yanzhong,Xu Taoyu,et al.Application of the ratio of characteristic elements in provenance analysis[J].Acta Sedimentologica Sinica,2007,25(2):230-238]
46 Clayton R N,Jackson M L,Sridhar K.Resistance of quartz silt to isotopic exchange under burial and intense weathering conditions[J].Geochimica et Cosmochimica Acta,1978,42(10):1517-1522
47 Aleon J,Chaussidon M,Marty B,et al.Oxygen isotopes in single micrometer-sized quartz grains:Tracing the source of Saha-ran dust over long-distance atmospheric transport[J].Geochimica et Cosmochimica Acta,2002,66(19):3351-3365
48 Wanas H A,Maguid N M.Petrography and geochemistry of the Cambro-Ordovician Wajid Sandstone,southwest Saudi Arabia:Implication for provenance and tectonic setting[J].Journal of Asian Earth Sciences,2006,27(4):416-429
49 Das B K,AL-Mikhlafi A S,Kaur P.Geochemistry of Mansar Lake sediments,Jammu,India:Implication for source-area weathering,provenance,and tectonic setting[J].Journal of Asian Earth Sciences,2006,26(6):649-668
50 Osae S,Asiedu D K,Banoeng-Yakubo B,et al.Provenance and tectonic setting of Late Proterozoic Buem sandstones of southeastern Ghana:Evidence from geochemistry and detrital modes[J].Journal of African Earth Sciences,2006,44(1):85-96
51 Getaneh W.Geochemistry provenance and depositional tectonic setting of the Adigrat Sandstone northern Ethiopia[J].Journal of African Earth Sciences,2002,35(2):185-98
52 Emmel B,Geiger M,Jacobs J.Detrital apatite fission-track ages in Middle Jurassic strata at the rifted margin of W Madagascar:Indicator for a protracted resedimentation history[J].Sedimentary Geology,2006,186(1-2):27-38
53 李忠,彭守涛,许承武,等.韩国太白山盆地古生界砂岩碎屑锆石U-Pb年代及其区域构造含义[J].岩石学报,2009,25(1):182-192[Li Zhong,Peng Shoutao,Xu Chengwu,et al.U-Pb ages of the Paleozoic sandstone detrital zircons and their tectonic implications in the Tabeaksan basin,Korea[J].Acta Petrologica Sinica,2009,25(1):182-192]
54 Balica B C,Ducea M N,et al.Late Cambrian Early Ordovician Gondwanan terranes in the Romanian Carpathians:A zircon U Pb provenance study[J].Gondwana Research,2009,16(1):119-133
55 Shouye Yang,Zhongbo Wang,Yun Guo,et al.Heavy mineral compositions of the Changjiang(Yangtze River)sediments and their provenance-tracing implication[J].Journal of Asian Earth Sciences,2009,35:56-65
56 Chetel L M,(Toni)Simo J A,Singer S.40Ar/39Ar geochronology and provenance of detrital K-feldspars,Ordovician,Upper Mississippi Valley[J].Sedimentary Geology,2005,182(1-4):163-181
57 Zhenbing She,Changqian Ma,Mason R,et al.Provenance of the Triassic Songpan Ganzi flysch,west China[J].Chemical Geology,2006,231(1-2):159-175
58 Gesa K,Poppe L B,Rolf B P,et al.Provenance of Pliocene sediments and paleoenvironmental changes in the southern North Sea region using Samarium Neodymium(Sm/Nd)provenance ages and clay mineralogy[J].Sedimentary Geology,2004,171(1-4):205-226
59 André W B,Ana M P M,Anderson J M,et al.Santa B rbara Formation(Early Paleozoic,Ca apava do Sul,southern Brazil):Petrographic and Sm Nd isotopic provenance parameters[J].Journal of South A-merican Earth Sciences,2008,26(4):485-497
60 Spiegel C,Wolfgang S,Wolfgang F,et al.Nd and Sr isotopic ratios and trace element geochemistry of epidote from the Swiss Molasse Basin as provenance indicators:Implications for the reconstruction of the exhumation history of the Central Alps[J].Chemical Geology,2002,189:231-250
61 孟宪伟,杜德文,陈志华,等.长江、黄河流域泛滥平原细粒沉积物87Sr/86Sr空间变异的制约因素及其物源示踪意义[J].地球化学,2000,29(6):562-570[Meng Xianwei,Du Dewen,Chen Zhihua,et al.Factors controlling spatial variation of87Sr/86Sr in the fine-grained sediments from the overbanks of the Yellow River and Yangtze River and its implication for provenance of marine sediments[J].Ceochimica,2000,29(6):562-570]
62 Marivaldo S N,Ana M G,Moacir J B M,et al.Provenance of Albian sandstones in the São Luís-Grajaú Basin(northern Brazil)from evidence of Pb-Pb zircon ages,mineral chemistry of tourmaline and palaeocurrent data[J].Sedimentary Geology,2007,201(1-2):21-42
63 Yang Shouye,Jiang Shaoyong,Lin Hongfei,et al.Sr-Nd isotopic compositions of the Changjiang sediments:Implications for tracing sediment sources[J].Science in China:Series D,2007,50(10):1556-1565
64 Lianhua Hou,Jinghong Wang,Lichun Kuang,et al.Provenance sediments and its exploration significance:A case from Member 1 of Qingshuihe Formation of Lower Cretaceous in Junggar Basin[J].Earth Science Frontiers,2009,16(6):337-348
65 李昌,曹全斌,寿建峰,等.自然伽马曲线分形维数在沉积物源分析中的应用[J].天然气地球科学,2009,20(1):148-152[Li Chang,Cao Quanbin,Shou Jianfeng,et al.Application of fractal dimension of natural gamma logging curve in provenance analysis[J].Natural Gas Geoscience,2009,20(1):148-152]
66 李军,王贵文.高分辨率倾角测井在砂岩储层中的应用[J].测井技术,1995,19(5):352-357[Li Jun,Wang Guiwen.Applications of high resolution dip log to the study of sand reservoir[J].Well Logging Technology,1995,19(5):352-357]
67 黄传炎,王华,周立宏,等.北塘凹陷古近系沙河街组三段物源体系分析[J].地球科学,2009,39(6):975-984[Huang Chuanyan,Wang Hua,Zhou Lihong,et al.Provenance System Characters of the Third Member of Shahejie Formation in the Paleogene in Beitang Sag[J].Earth Science-Journal of China University of Geosciences,2009,39(6):975-984]
68 Kairyté M,Stevens R L.Quantitative provenance of silt and clay within sandy deposits of the Lithuanian coastal zone(Baltic Sea)[J].Marine Geology,2009,257(1-4):87-93
69 Boulay S,Colin C,Trentesaux A,et al.Sediment sources and East Asian monsoon intensity over the last 450 ky:mineralogical and geochemical investigations on South China Sea sediments[J].Palaeogeography,Palaeoclimatology Palaeoecology,2005,228:260-277
70 吕俏凤.利用亲陆元素和陆源化合物研究物源与隐蔽储层的新方法[J].中国海上油气,2007,19(6):367-371[Lǚ Qiaofeng.A new method to study provenance and subtle reservoir using continental elements and terrigenous minerals[J].China Offshore Oil and Gas,2007,19(6):367-371]
71 郭志刚,杨作升,陈致林,等.东海陆架泥质区沉积有机质的物源分析第[J].地球化学,2001,30(5):416-424[Guo Zhigang,Yang Zuosheng,Chen Zhilin,et al.Source of sedimentary organic matter in the mud areas of the East China Sea shelf[J].Geochimica,2001,30(5):416-424]
72 Mark W H,Andrew C M.Evaluation of sediment provenance using magnetic mineral inclusions in clastic silicates:Comparison with heavy mineral analysis[J].Sedimentary Geology,2004,171(1-4):13-36
73 周晶,戴雪荣,付苗苗.沉积物磁性特征对物源指示作用的探讨[J].土壤通报,2008,39(5):1169-1172[Zhou Jing,Dai Xuerong,Fu Miaomiao.Discussion of sediment magnetic signature to material sources'implication[J].Chinese Journal of Soil Science,2008,39(5):1169-1172]
74 Moral C J P,Gutiérrez M J M,Bellón A S,et al.Surface textures of heavy-mineral grains:a new contribution to provenance studies[J].Sedimentary Geology,2005,174(3-4):223-235
75 Ohta T.Geochemistry of Jurassic to earliest Cretaceous deposits in the Nagato Basin,SW Japan:implication of factor analysis to sorting effects and provenance signatures[J].Sedimentary Geology,2004,171(1-4):159-180
76 Rieser A B,Neubauer F,Yongjiang Liu,et al.Sandstone provenance of north-western sectors of the intracontinental Cenozoic Qaidam basin,western China:Tectonic vs.climatic control[J].Sedimentary Geology,2005,177(1-2):1-18
77 Kutterolf S,Diener R,Schacht U,et al.Provenance of the Carboniferous Hochwipfel Formation(Karawanken,Austria/Slovenia):Geochemistry versus petrography[J].Sedimentary Geology,2008,203(3-4):246-266
78 Roddaz M,Viers J,Brusset S,et al.Controls on weathering and provenance in the Amazonian foreland basin:Insights from major and trace element geochemistry of Neogene Amazonian sediments[J].Chemical Geology,2006,226(1-2):31-65
79 Barbera G,Giudice A L,Mazzoleni P,et al.Combined statistical and petrological analysis of provenance and diagenetic history of mudrocks:Application to Alpine Tethydes shales(Sicily,Italy)[J].Sedimentary Geology,2009,213(1-2):27-40
80 Qingyu Guan,Baotian Pan,Hongshan Gao,et al.Geochemical evidence of the Chinese loess provenance during the Late Pleistocene[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2008,270(1-2):53-58
81 王建刚,胡修棉,黄志诚.藏南桑单林地区晚白垩世—始新世砂岩物源区分析[J].地质学报,2008,82(1):92-103[Wang jiangang,Hu Xiuman,Huang Zhicheng.Provenance analysis of Late Cretaceous-Early Eocene sandstones in the Sangdanlin Area,Southern Tibet[J].Acta Geologica Sinica,2008,82(1):92-103]
82 杨超,陈清华,吕洪波,等.南盘江盆地中三叠统复理石的物源和沉积构造背景分析[J].中国石油大学学报,2008,32(6):22-27[Yang Chao,Chen Qing-hua,Lv Hong-bo,et al.Provenance and tectonic setting of the middle Triassic flysch in Nanpanjiang Basin[J].Journal of China University of Petroleum,2008,32(6):22-27]
83 Farmer G.L,Licht K,Swope R J,et al.Isotopic constraints on the provenance of fine-grained sediment in LGM tills from the Ross Embayment,Antarctica[J].Earth and Planetary Science Letters,2006,249(1-2):90-107
84 Young Ji Joo,Yong Il Lee,Zhiquiang Bai.Provenance of the Qingshuijian Formation(Late Carboniferous),NE China:Implications for tectonic processes in the northern margin of the North China block[J].Sedimentary Geology,2005,177(1-2):97-114
85 Damiani D,Giorgetti G.Provenance of glacial marine sediments under the McMurdo/Ross Ice Shelf(Windless Bight,Antarctica):Heavy minerals and geochemical data[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2008,260(1-2):262-283
86 Fontanelli P D R,Ros L F D,Marcus Vinicius Dorneles Remus.Provenance of deep-water reservoir sandstones from the Jubarte oil field,Campos Basin,Eastern Brazilian Margin[J].Marine and Petroleum Geology,2009,26(7):1274-1298
87 Hallsworth C R,Chisholm J I.Provenance of late Carboniferous sandstones in the Pennine Basin(UK)from combined heavy mineral,garnet geochemistry and palaeocurrent studies[J].Sedimentary Geology,2008,203(3-4):196-212
88 黄传炎,王华,周立宏,等.北塘凹陷古近系沙河街组三段物源体系分析[J].地球科学,2009,34(6):975-984[Huang Cuanyan,Wang Hua,Zhou Lihong,et al.Provenance system characters of the Third Member of Shahejie Formation in the Paleogene in Beitang[J].Earth Science,2009,34(6):975-984]
89 范德江,孙效功,杨作升,等.沉积物物源定量识别的非线性规划模型——以东海陆架北部表层沉积物物源识别为例[J].沉积学报,2002,20(1):29-33[Fan Dejiang,Sun Xiaogong,Yang Zuosheng,et al.A mathematical model on the quantitative provenance identification:Take the identification of the surface sediment sources from ECS as an example[J].Acta Sedimentologica Sinica,2002,20(1):29-33]
90 王硕儒,范德江,汪丙柱.岩相识别的神经网络计算[J].沉积学报,1996,14(4):154-160[Wang Souru,Fan Dejiang,Wang Bingzhu.Facies recognition using the neural networks[J].Acta Sedimentologica Sinica,1996,14(4):154-160]
91 Meinhold G,Anders B,Kostopoulos D,et al.Rutile chemistry and thermometry as provenance indicator:An example from Chios Island,Greece[J].Sedimentary Geology,2008,203(1-2):98-111
92 Zack T,Eynatten H,Kronz A.Rutile geochemistry and its potential use in quantitative provenance studies[J].Sedimentary Geology,2004,171(1-4):37-58
93 Weltje G J,Eynatten H V.Quantitative provenance analysis of sediments:review and outlook[J].Sedimentary Geology,2004,171(1-4):1-11
94 林晓彤,杜树杰,李巍然.东海外缘碎屑矿物的物源解释——基于BP神经网络的判识分区[J].海洋科学,2003,27(11):75-80[Lin Xiaotong,Du Shujie,Li Weiran.Zonation of Detrital sediments distribution on the outer East China Sea:Determined by using BP artificial neural network analysis[J].Marine Sciences,2003,27(11):75-80]
95 Fanti F.Bentonite chemical features as proxy of late Cretaceous provenance changes:A case study from the Western Interior Basin of Canada[J].Sedimentary Geology,2009,217(1-4):112-127
96 乔淑卿,杨作升.石英示踪物源研究进展[J].海洋科学进展,2006,24(2):266-274[Qiao Shuqing,Yang Zuosheng.Advances in study on quartz as a tracer form material source[J].Advances in Marine Science,2006,24(2):266-274]
97 Beerten K,Pierreux D,Stesmans A.Towards single grain ESR dating of sedimentary quartz:First results[J].Quaternary Science Reviews,2003,22:1329-1334