近年来,计算机技术、网络技术和通讯技术的飞速发展给教育领域带来了深远的影响。网络学习的广泛应用,移动学习、Web2.0等新技术的兴起,使得学习方式从数字化学习(E-Learning)、移动学习(M-Learning)发展到泛在学习(U-Learning)[1]。泛在学习是指任何人在日常生活中根据需要利用网络服务在任何时间、任何地点、任何环境中进行的学习[2][3]。由于泛在学习把学习的灵活性和开放性融入人们的日常生活中,它正改变着传统的远程教育模式,使学习者摆脱学习场所、环境与模式的限制,其理论基础、方法与资源建设[4]等引起了国内外学者的广泛关注。
户外教学是实现地理教育的一种有效教学方法,让学生运用地理知识来理解地理现象、培养学生的地理素养和地理技能[5]。由于户外教学活动中师生比例低、学生的学习动机难以持续、学生之间协作性较弱等问题,当前在中小学较难组织和开展有效的户外地理教学。以智能手机、平板电脑和掌上电脑(PDA)为终端的移动地理信息系统,因整合了遥感技术、全球定位技术、网络通信技术等数据采集能力,可形象、直观地获取与展现地理信息。将其应用于户外地理探究教学,可实时显示与反映学生所处的环境特征,有利于提高学生的空间认知与推理能力。应用基于问题的学习(Problem-Based Learning,PBL)来组织户外教学活动,可以协助学生在真实的户外环境下,培养解决问题的技能和自主学习的能力。
本文在研究泛在学习系统架构的基础上,针对户外地理教学与学习的应用需求,结合校园教育云平台、基于Android以及iOS平台等智能终端,架设泛在学习的软、硬件架构,并使用GPS定位服务、地理信息系统等技术,开发了基于问题学习的地理户外探究学习资源。
1.泛在学习的研究现状
美国哈佛大学的“支持泛在学习的手持设备”项目、麻省理工学院的“手持式增强现实模拟项目”和“泛在学习游戏项目”,旨在探索无线手持设备如何增强大学里的学习和教学,来实现泛在学习的学习环境[6]。韩国从2004年开始确立U-Korea总体政策规划,旨在构建校园范围和大范围的泛在学习环境[7]。日本德岛大学开发的JAMIOLAS系统,是可以在个人计算机上使用的情境感知语言学习支持系统[8]。这些项目探索了泛在学习的具体内容和学习形式。
在我国,关于泛在学习理论的研究也逐步展开,陆续召开了各种关于泛在学习的专题会议。在理论研究的同时,也开始了泛在学习平台的设计与环境的建设。杨孝堂依据学习方式和学习的资源基础将泛在学习的模式分为三类:非正式资源学习、准正式主题学习和正式的课程学习[9]。刘婷等提出基于位置感知的泛在学习模式,通过定位用户进入区域,主动对用户提出服务邀请,并根据学习者的位置变化,提供新环境中的服务内容[10]。杨现民等在综合分析当前e-Learning领域的资源进化现状的基础上,提出了泛在学习资源的进化模型[11]。
纵观国内外研究现状,大多围绕泛在学习模式等普遍性特征,并未考虑与现有的学科知识与学习资源特别是云资源的结合。相对于系统与模型构建、学习资源构建来说,教学资源建设的研究没有引起研究人员的重视。
2.泛在学习的技术实现方案
针对泛在学习的服务架构,刘婷等提出由客户端、网络环境、服务器端和数据库组成的基于位置感知的泛在学习环境架构,给出了一般性的泛在学习系统组织方法,基于PDA终端使用GPS进行位置获得[12]。王世庆基于Struts、Spring和Hibernate框架,采用Microsoft SQL Server数据库,Web客户端和Android智能手机终端,设计与实现了基于移动终端的泛在学习研究,主要功能包括用户管理、学习资源管理、生成性数据管理等,建立了一般性课程知识的学习环境,偏重于系统的知识管理与针对个人的记录管理[13]。叶海智等基于GPS定位和RFID标签探测技术构建了个性化知识感知地图系统,使用PDA构建访问客户端,服务器端的数据库主要采用SQL Serv⁃er 2000来存储和管理所有学习者的特征、行为、信息和学习者周围环境对象,客户端通过登录网页形式进行访问[14]。然而这些系统一方面客户端的交互性受到产品设备的限制,滞后于当前触屏性的交互与反馈,另一方面所提供的地图服务功能有限,只提供基础的定位功能。
3.基于位置服务的技术方案与架构
基于位置的服务(Location Based Service,LBS),是通过电信移动运营商的无线通讯网络(如GSM网、CDMA网)或外部定位方式(如GPS)获取移动终端用户的位置信息,在地理信息系统(Geo⁃graphic Information System,GIS)平台的支持下,为用户提供相应服务的一种增值业务[15]。它是定位技术、移动通讯技术、GIS技术和互联网技术相结合的产物。LBS技术的核心包括空间位置信息获取模块、空间数据网络传输模块以及地理信息应用服务模块三个方面。
胡加艳等采用Zigbee无线网络与GPS实现室内外定位模块;地理信息模块则采用ArcEngine对嵌入式GIS平台进行二次开发;使用校园网信息亭、手机或PDA为终端,构建了一个校园LBS服务[16]。任维政等侧重于GIS服务功能的研究与应用,在对网格GIS的整体结构与功能进行研究的基础上,针对数字校园LBS的特点,提出了基于网格GIS的数字校园LBS体系结构模型。移动终端采用装有Windows Pocket PC系统的PDA,配有GPS定位模块和Zig⁃bee通讯模块[17]。
以上校园LBS系统,受Zigbee的接口要求、移动终端类型单一、GIS的架构复杂以及授权的限制,开发强度与难度高、周期长、成本大,在满足提供基础地理信息服务的条件下,并不适合于教学应用,特别是户外教学的应用。
姜文周等利用Android客户端,根据校园区域里的用户兴趣,为研究对象建立了用户兴趣模型库,并据此提出了一种个性化Google Map封装方案,实现了校园环境的LBS的个性化服务[18],提出使用成熟的谷歌地图服务以及应用智能手机进行地图访问,然而并未结合具体的教学应用,只是针对普通大众的地图查询与导航。
笔者立足于地理认知教育与户外探索学习的实际情况,针对地理教学中地理位置与地图识图的需求,借助GPS定位服务和Google Maps API地图服务功能,利用智能手机或平板电脑等终端设备,通过GPRS、3G、Wifi或宽带网络,访问位于校园教育云的学习资源,建立泛在学习模式下地理学习的新方案。
泛在学习环境的系统架构包括:学习终端、校园教育云服务与学习资源三个部分,如图1所示。
图1 系统结构图
1.学习终端
学习终端是利用现有基于Android或iOS系统的手机与平板电脑,借助其普遍集成的GPS定位模块记录用户的位置变化信息,基于Google Maps API开发Android或iOS的客户应用程序,通过无线网络、GPRS、3G等访问校园的教育云服务平台,将适当的学习资源及时地传送给用户。
2.校园教育云服务
借助于校园云硬件资源与网络资源,将地理学习资源以服务的方式进行发布。利用校园云平台的存储阵列存储应用资源和用户数据;通过校园云平台的服务器以及网络解析服务,实现对校园网络以及公共网络的应用发布。将应用搭建在校园教育云平台下,可有效降低开发费用与周期。
3.学习资源
学习资源主要采用SOA软件架构,将地理信息技术和数据库技术进行服务封装,用于构建中学地理教学的应用平台。建立内容服务解析服务器,完成对来自校园教育云端请求的解析,根据服务的类型转换成具体的功能请求。针对户外教学的内容要求,建立课件和知识点库;根据知识内容,建立问题库与测试习题库;应用GIS地图服务器,建立地物影像图的管理;建立用户个人档案库,详细记录学习进度以及系统参数,用于用户登录后自动加载环境设置。
图2 系统功能图
充分考虑移动终端的特性及探究学习的需要,遵循“高内聚,低耦合”的原则,将系统进一步细分成多个模块,并用接口详细定义各模块之间的关系,通过虚接口为新模块扩充预留了接口,图2表示该系统的功能结构。
1.定位与基于位置搜索模块
借助于Google Maps API,在Android以及iOS平台上定制地图应用,实现地图缩放、路径规划等功能。通过定位服务,可以获取终端设备所在的经纬度坐标,并根据学习主题为学生提供该处所需的地理图层和学习内容。例如,通过路径导航功能可确认探究活动起始地到目的地之间的最短路径,图3表示了为某次户外探究学习规划的路径,起始点为该校学生在校园门口搭乘大巴时的位置,以气泡表示的目标地点为终点。单击地图上的标志可查看该点所对应的名称、经纬度坐标等信息。
图3 GPS卫星导航(a定位及导航信息输入;b导航结果)
2.知识点学习模块
多媒体信息更直观、生动,并能吸引学生的注意力与兴趣。Android以及iOS系统中已有集成图片、音频和视频等多媒体应用的成熟机制。设计学习活动模块时,以游戏或题目方式,使用图、形、音相结合的资源,达到引导学生学习的目的。同时,学生在学习过程中或学习结束时,按照学习要求将成果上传到服务器端的个人空间。
3.GIS图层显示与管理模块
学习过程中用户根据学习要求通过无线网络向服务器提交业务请求,并从数据库中提取属性数据,用隐藏标签的方法将该数据传到用户界面。最后,通过Google Maps API向Google Maps服务器发送请求,将相关信息(如地图数据、学习专题数据)叠加显示在Google地图上。拥有教师权限的用户,可通过图层管理功能,实现对图层的新增、修改、查询等操作。此外,该模块还能记录用户在地图上书写的笔记等信息。
4.数据库模块
数据库中存储着地图数据、教学资料、用户的个人信息以及试题库。学生在学习过程中拍摄的照片、手绘的草图、个人学习记录和测试题的完成情况,均将上传到其个人空间中。教师通过检查学生的学习记录进行教学评估。在设计试题库中的题目时,应考虑户外教学的特点,针对实际的学习情境进行设计。学生答题后,系统会立即给予反馈,以加强学习的效果。测试题的类型应以选择题和识图填空题为主。如:
题目1:请说出下面哪一项不属于听涛区中的寓言雕塑:()
A.鹬蚌相争;B.刻舟求剑;C.盲人摸象;D.掩耳盗铃
户外地理探究教学可令学生利用各种感官直接感知地理事物从而获得地理知识和技能的能力[19]。建构主义认为,兴趣是建构新知识的原动力。通过户外探究学习,学生得到实际验证、切身操作的机会,为创设探究环境提供了条件,也调动起学习兴趣和探究欲望[20]。户外探究学习更强调学生的参与性,改变以往被动接受的学习方式,尽可能让学生亲自操作仪器设备或程序,记录观察得到的数据,分析研究获取的信息,主动探讨并得出结论。在户外探究教学过程中,老师需要及时地响应学生的反馈,学生们提出的每一个“疑问”或许就是一个“新发现”,这些问题将有助于建构正确的地理概念和原理。系统以“武汉东湖风景区自然人文景观的学习”为例,结合九年一贯能力指标设计课程内容,具体设计方案如表1。
表1 基于问题解决的教学流程
1.创设问题情境阶段
智能设备终端,通过GPS定位功能,确定学习者当前所在位置,通过位置相关推送技术,系统为学生提供学习材料,引导学习者进入问题情境,如图4(a)所示。
2.明确问题所在阶段
图4 基于问题解决的教学流程
在此阶段,通过设计相关任务,引导学生学习,以提出问题的形式要求学生答题。答题方式可分为:书写答题、拍照答题、画图答题以及利用GPS定位答题等。答题过程中所生成的答题内容均记录在系统数据库中,一方面作为学生整个学习活动的过程资料,用于学习反思和分享;另一方面供教师作为评价依据。图4(b)为利用GPS寻找宝藏所在地。
3.生成问题解决途径阶段
学生在自主学习及基于问题解决的答题过程中,遇到不清楚的问题,可点击帮助,进入任务提示页面,系统将给出任务的内容、操作步骤等提示,协助其完成学习任务。图4(c)即为学习任务详情和如何完成任务的提示页面。
4.展示成果阶段
在进行了一定的学习后,学生们可以利用教学系统展示其学习成果。图4(d)为某同学在回答某个问题时,使用手绘功能绘制的所在地周边地理环境的图片。系统将图片存储在后台中,可通过共享功能实时与其他同学共享学习成果。
5.结果验证阶段
基于问题解决的学习任务完成后,采用测验题的方式,检查自我学习成效。系统以填空题或选择题方式预先设置与教学活动内容相关的题目,如图4(e)(f)所示。学生答题后,系统将评判学生的答题情况,并将最终记录作为学生的学习活动成绩。
户外地理探究教学让学生成为学习的主动者,培养学生的观察能力、分析和解决实际问题的能力。根据上述教学目标,为了检验该教学软件的有效性,笔者进行了评价,步骤如下:
1.选择被试对象
选定武汉市某中学八年级两个班级的学生为研究对象,为了尽可能地排除学生能力水平差异对评价结果的影响,特意选择了认知水平相当的两个平行班作为调研群体,使教学实验的误差降到最低。A班55人,作为控制组,实施传统户外地理教学活动;B班54人,作为实验组,使用笔者设计的GeoOutside⁃Explorer户外地理教学系统开展教学活动。
2.实验过程
为了考察教学前后两个班级学生对于武汉东湖风景区自然人文景观知识的认知程度,笔者共进行了前测和后测两次测验。前测用于考察学习者对学习内容掌握能力的初始状态,后测在前测的基础上,考察两个班级经过不同教学方式之后的状态。测试题目由3位地理教师共同拟定,前测和后测均包含30道题,涉及的知识点如下:运用地图辨别方向,量算距离;绘制局部简易地形图;识别地形图上等高线的山峰、山脊、山谷;在地图上标出某景点的名称并加以介绍;辨识景区不同的植被类型;设计景区出游方案。每个知识点平均考察5道题,确保能真实地反映学生的实际水平。
3.实验结果
为了探讨不同教学方式对于地理学习成效的影响,分析A班与B班的学习成效。以教学方式为自变量,后测成绩为因变量,前测成绩为共变量,进行独立样本单因子共变量分析。其中,统计的前测成绩与后测成绩的平均值与标准差如表2所示。经同质性测验后,以α=0.05为显著水准进行共变量分析,结果如表3所示,其中包括后测成绩的组间平方和SSB、组内平方和SSW、组间自由度df、组内自由度df、组间调整均方MSB、组内调整均方MSW,以及标准F值。
表2 不同教学方法前后测成绩统计表
表3 后测共变量分析表
由表3得知,排除共变量(前测成绩)对因变量(后测成绩)的影响后,自变量(教学方式)对因变量的实验处理效果显著,标准F值为13.40(其中p<0.05),表明不同教学方式间有显著差异。
4.讨论与结果分析
根据实验对比结果可以发现,传统方法与本文的学习方法在地理学习成效上有着较大的差异。采用户外地理学习资源的学习者,其学习成绩优于采用传统户外地理教学的学习者。探究其原因发现,使用泛在学习资源的学生,在真实环境中,通过系统与场景进行互动,将书本上抽象、平面的知识与实际地理现象和立体地理环境相结合,理论联系实际,能更准确地掌握学习内容。而传统户外教学方式,教师在开放式空间中进行教学引导时,难以控制学生的学习状况,而且学生易受外在因素的影响而失去专注力。因此,使用基于泛在学习的户外地理教学系统,增强学生兴趣,提升学生专注性,提高学习成绩,能有效降低或消除传统户外教学的缺点。
通过实际应用发现,户外学习时网络的性能会影响到系统的展示效果。由于基于Google Map地图服务,地图的更新速率取决于网络的传输速度。另外,使用3G或GPRS等连接,将占用较高的数据流量。因此,后续研究将考虑利用数据缓存技术,根据学习区域将影像、地图等较大数据,进行终端缓存,以提高应用的效果。
在泛在学习的研究与应用中,资源建设无论在当前还是在今后都是一个重要的方面。本文从中小学地理教育资源出发,特别关注传统课堂教学所忽略的户外教学,利用校园云平台以及GPS全球定位技术、GIS地图管理技术、Android和iOS智能终端技术搭建了一个户外地理学习系统,并通过基于问题解决的教学活动方案与学习方式,创设自主学习情境,使学生在户外探究的过程中,增加学习地理的意愿与兴趣,提高地理素养,为探索利用现有信息技术进行远端学习与应用资源建设,提供有效的解决方案与思路。
[1]魏雪峰,张永和,魏志慧.从数字化学习到泛在学习的转变—访国际知名教育技术专家金书轲教授[J].开放教育研究,2012,18(2):4-8.
[2]夏云,李盛聪.近年我国泛在学习研究文献的综述[J].中国远程教育,2012,(5):36-40.
[3]潘基鑫,雷要曾,程璐璐等.泛在学习理论研究综述[J].远程教育杂志,2010,(2):93-98.
[4][9]杨孝堂.泛在学习:理论、模式与资源[J].中国远程教育,2011,(6):69-73.
[5]教育部基础教育司地理课程标准研制组.地理课程标准解读(实验稿)[S].湖北,2001.
[6]Mit.Ubiquitous Games[EB/OL].http://education.mit.edu/projects/ubiquitous-games.
[7]李舒愫,顾凤佳,顾小清.U-learning国际现状调查与分析[J].开放教育研究,2009,(1):98-104.
[8]张海,李馨.日本移动学习实践研究前沿——对话东京大学教育技术首席专家内山祜平副教授[J].中国电化教育,2009,(9):1-6.
[10][12]刘婷,丘丰.论未来终身教育新模式——泛在学习[J].成人高教学刊,2007,(4):29-31.
[11]杨现民,余胜泉.泛在学习环境下的学习资源进化模型构建[J].中国电化教育,2011,(9):80-86.
[13]王世庆.基于移动终端的泛在学习系统的研究与实践[D].成都:西南交通大学,2012.
[14]叶海智,辛尚鸿,王富强.泛在学习环境下个性化知识感知地图系统的构建[J].现代教育技术,2008,18(4):35-39.
[15]柳林,张继贤,唐新明,李万武.LBS体系结构及关键技术的研究[J].测绘科学,2007,32(5):144-146.
[16]胡加艳,陈秀万,陶迎春,王袆婷.基于室内外定位的校园LBS研究[J].计算机工程,2010,36(8):254-257.
[17]任维政,邓中亮,徐连明.面向数字校园的网格LBS体系构架研究[J].工程图学学报,2010,(2):54-58.
[18]姜文周,王彦超,李先毅.基于Android的个性化校园地图服务设计[J].实验技术与管理,2012,29(3):109-111.
[19]行动地理资讯系统应用于国小乡土地理教学之研究[J].Journal of Geographical Science.2009,(56):59-81.
[20]穆肃,曾祥跃.远程教学中基于问题学习的设计与实施[J].电化教育研究,2011,(4):65-68