直接序列扩频通信技术在铁路信号传输中的应用研究

2012-11-29 08:45强生杰
铁路计算机应用 2012年4期
关键词:铁路信号干扰信号信噪比

王 伟,何 涛,强生杰

(兰州交通大学 光电技术与智能控制教育部重点实验室,兰州 730070)

国内现有的无线铁路信号传输系统主要是基于GSM-R的第二代通信系统,采用时分复用(TDMA)和频分复用(FDMA)技术。随着铁路系统信息化程度越来越高,传输量和抗干扰能力也随之加大,扩频通信方式可以满足铁路信号传输中的诸多要求。

1 直接扩频通信系统基本原理及仿真

1.1 系统工作原理

扩频通信即扩展频谱通信,系统将发送信号经过信息调制成数字信号,然后利用扩频函数产生的伪随机码将信号进行传输。在接收端进行的是发送过程的逆过程,即将接收到的信号用扩频函数将伪随机码进行解扩,再将信号进行解调从而得到原始发送信息。

基本模型分为发送模块和接收模块两部分,如图1和图2。模型中的发送模块进行了3次调制后发送射频信息进行传输,接收模块同样也进行了3次解调。本系统中重要的是扩频调制和解扩调制,这2个关键环节需使用同一时钟进行控制,且过程中的伪随机码序列必须是绝对一致的。

1.2 衡量扩频系统性能参数

图1 发送模块

图2 接收模块

(1)误码率。是衡量数据在规定时间内传输精确性的指标。误码率=传输中的误码/所传输的总码数*100%。如果有误码就有误码率,它反映了数据传输质量。

(2)信噪比。信噪比(SNR)r是信号的平均功率S与噪声的平均功率N之比,即r=S/N,将其表示成分贝形式r(dB)=10lg(S/N)(dB)。 信噪比越大说明噪声在传输信息里所占的比例越小,对信息传输影响越小,可靠度越高。

(3)处理增益。为了衡量扩频系统的抗干扰性的提高程度,将解扩器输入端信噪比和输出端的信噪比的比值定义为扩频系统处理增益,由以下公式表示:

用分贝数表示为:

扩频通信系统独具扩频调制和解调两个过程,用处理增益表明扩频调制前后信噪比的改善程度,反映了对干扰的抑制程度。

(4)噪声容限。存在干扰信号时,干扰信号比有用信号高出一定范围的情况下系统仍能够正常工作。在此情况下,接收机能承受的干扰信号比有用信号高出的倍数定义为噪声容限,用分贝数表示为:

式中,Mj为噪声容限;Gp为系统处理增益;(S/N)min为信息被正确解调时所需的最小信噪比;Ls为系统损耗。

1.3 系统仿真

该仿真是在matlab环境下实现的,程序主要由调制部分,解调部分和伪随机序列生成部分构成。数据输入后先转化成ASCII二进制码进行传输,通过调用m序列生成函数进行相加,产生扩展后的数据,然后将扩频码转换为BPSK (1,-1)序列,数据传输时进一步将BPSK双极性转换到单极性,最终在数据输出端进行m序列解扩,再结合解调过程将ASCII二进制码转换为输出数据。

从图3(b)中可以看出数据展宽后可以明显降低信号功率密度,调制后传输的信号和白噪声具有很大的相似度,可以实现高隐蔽性传输。从图3(c)和图3(d)对调制信号包络,相干载波相位模糊度及其对解调数据的影响等性能对比,得出BPSK调制出传输过程中具有高的抗干扰能力和频谱利用率。 最终解扩和解调后的输出数据图3(e)和输入数据图3(a)具有高度的一致性,可见此扩频方式具有很强的抗干扰性。

图3 (a)数据输入

图3 (b)数据扩展

图3 (c)BPSK调制

图3 (d)数据传输

图3 (e)数据输出

2 干线铁路信号传输的优势

2.1 性能参数优势比较

直接扩频通信系统在误码率、信噪比、处理增益等参数上表现优异,较其它通信方式具有较大的优势。具体的通信系统衡量参数比较,如表1。

2.2 理论优势

(1)抗干扰能力强。直接扩频通信系统中,解扩器端输入与输出信号功率保持不变,而对于干扰信号解扩过程相当于进行扩频,干扰功率被扩展到很宽的频带上,功率谱密度下降,这使得解扩过程中输入端的干扰信号功率大大降低。通过带通滤波器的滤波,大部分的干扰信号被滤除,有用信号则被保留。另外,扩频系统对各种恶劣天气时通信链路造成的影响进行抵抗,与传统微波相比可以进行跨江传输,在海面的长距离优质传输。这些优势适用于铁路系统在复杂环境下安全可靠的进行信号传输。

(2)可以实现多址通信系统。多个通信在信息发送端和接收端使用相同的伪随机序列,而不同的通信则使用不同的伪随机序列,这样就实现了在相同载频下互不干扰的通信,实现频率复用,从而充分利用了频谱资源。由此可以进行机动灵活组网,有助于统一规划,分期实施,便于扩充容量,有效地保护前期投资。

(3)有效抗多径干扰。在直接扩频通信系统接收到电波后,将同步锁定直达路径且信号最强的电波,其余电波由于非直达,会延时到达,在相关解扩作用下只作为噪声。另外,接收端把多路径来的同一码序波形相加使之得到加强,从而实现抗多径干扰。

(4)隐蔽性强,对其它系统干扰小。 扩频过程单位面积信号发送功率极低,隐蔽性强。低的功率谱密度,不容易被探测到,被截获的可能性降低,所以实现了其安全性方面的要求。同时,低功率谱密度让发射信号近似于噪声信号,而扩频信号可以在信道噪声和白噪声背景中传输,降低了对其它系统的干扰,增强了与其它系统的共存度。由于此系统的无线铁路信号传输过程中电磁干扰大幅度降低,不仅有利于将扩频通信系统应用于电气化铁路区段和弱场强区电磁环境,而且适于将其大规模应用到干线铁路中。

表1 通信系通衡量参数比较

(5)精确测距和定时。将应用周期长及伪随机码作为传输信号,比较从目的地反射回来的伪随机序列与原序列的相位,就可以得出时间差,由此也可实现定时操作,进一步利用传输速率和时间差的相乘即得出距离。相对于传统的轨道电路定位,扩频通信系统传输容量较大并且适合长距离传输,这有助于减少铁路测距定时设备,降低设备投资,便于维护。也可以作为原有测距定时设备的冗余,与原测距设备值进行比较,提高测距定时的安全可靠度。

3 结束语

扩频通信属于数字通信,是适合大容量高速率通信的系统,其加密功能和保密性,从一定程度上提高了铁路信息传输的安全可靠性。扩频通信系统容易实现码分多址,结合计算机及网路技术有助于铁路系统更快速的应用高新技术,从而使铁路系统向更加安全高效发展。另外,现有的扩频通信系统绝大部分使用的是数字电路,设备集成度高,安装简便,易于维护,更小巧可靠,扩展容易,平均无故障率时间也很长。目前,广州地铁和北京地铁等多个轨道交通项目中均采用了基于直接序列扩频技术的无线移动闭塞信号系统,为今后大规模成功应用于干线铁路提供了参考。

[1]韦惠民. 扩频通信技术及应用[M]. 西安:西安电子科技大学出版社,2007.

[2]曾小清,王长林, 张树京. 基于通信的轨道交通运行控制[M]. 上海:同济大学出版社,2007.

[3]李开成. 现代铁路信号中的通信技术[M]. 北京:中国铁道出版社,2010.

[4]张力军,钱学荣,张宗橙,曹士坷. 通信原理[M]. 北京:高等教育出版社,2008.

[5]王兴亮. 数字通信原理与技术[M].西安:西安电子科技大学出版社, 2003.

猜你喜欢
铁路信号干扰信号信噪比
基于小波域滤波的电子通信信道恶意干扰信号分离方法
两种64排GE CT冠脉成像信噪比与剂量对比分析研究
基于DJS的射频噪声干扰信号产生方法及其特性分析
基于粒子群算法的光纤通信干扰信号定位方法
基于深度学习的无人机数据链信噪比估计算法
渝贵铁路信号系统联调联试的思考与建议
铁路信号设备维修管理信息系统设计与开发
低信噪比下基于Hough变换的前视阵列SAR稀疏三维成像
雷击对铁路信号系统的影响探讨
既有铁路信号改造工程实施与研究