浅谈测量误差与不确定度

2012-08-15 00:49:03徐凤玲魏然振
塑料制造 2012年11期
关键词:真值系统误差分散性

徐凤玲,魏然振

(1.大连惠诚工贸有限公司,辽宁大连, 116001; 2 .大连住化金港有限公司,辽宁大连,116600)

1 前言

测量是人们认识自然、改造自然的基本手段之一,其目的在于获得被测对象的准确的量值。然而由于各种因素的影响,任何测量过程都不可能获得被测量的真值,而只能是在一定程度上使测量结果逼近真值。因此,一个完整的测量结果应包含被测量的量值(数值×计量单位)和对测得值可疑程度的说明。量值体现被测量的大小,而测得值的可疑程度反映了测量结果的准确性。如何更科学合理地表示测量结果的准确性,是测量工作的重要议题。

2 测量误差的概念

测量误差简称误差。按照传统误差理论,其定义为:测量结果与被测量真值的差。测量结果是人们认识的结果,不仅与量的本身有关,而且与测量程序、测量仪器、测量环境、以及测量人员等有关。而被测量真值是与被测量的定义一致的某个值,它是量的定义的完整体现,是与给定的特定量的定义完全一致的值,只有通过完善的或完美无缺的测量才能获得。真值从本质上说是不能确定的。但在实践中,对于给定的目的,并不一定需要获得特定量的“真值”,而只需要与“真值”足够接近的值。这样的值就是约定真值,对于给定的目的可用它代替真值。

测量结果的误差往往是由若干个分量组成的,这些分量按其特性可分为随机误差与系统误差两大类,而且无例外地取各分量的代数和。换言之,任一个误差,均可分解为系统误差和随机误差的代数和,即可用下式表示:误差=测量结果-真值=(测量结果-总体均值)+(总体均值-真值)=随机误差+系统误差

测量结果的修正,对系统误差尚未修正的测量结果,称为未修正结果。对系统误差进行修正后的测量结果,称为已修正结果。用代数方法与未修正测量结果相加,以补偿其系统误差的值,称为修正值。其效果是:真值=测量结果+修正值=测量结果-误差

需要强调指出的是:系统误差可以用适当的修正值来估计并予以补偿,但这种补偿是不完全的 ,也即修正值本身就含有不确定度。当测量结果以代数和的方式与修正值相加之后,其系统误差的绝对值会比修正前的小,但不可能为零,也即修正值只能对系统误差进行有限程度的补偿。

在计量工作中,仅限于取得测量值是无意义的,必须同时对测量值可能含有的误差的大小或范围做出估计,这样的测量结果才完整而有意义。

3 测量不确定度的概念

测量不确定度就是对测量结果质量的定量表征,测量结果的可用性很大程度上取决于其不确定度的大小。所以测量结果表述必须同时包含赋予被测量的值及与该值相关的测量不确定度,才是完整并有意义的。

表征合理地赋予被测量之值的分散性、与测量结果相联系的参数,称为测量不确定度。从词义上理解,“不确定度”即怀疑与不肯定,因此,广义上说,测量不确定度意味着对测量结果可信性、有效性的怀疑程度或不肯定程度。实际上,由于测量不完散和人们认识的不足,所得的测量值具有分散性,即每次测得的结果不是同一个值,而是以一定的概率分散在某个区域内的多个值。虽然客观存在的系统误差是一个相对确定的值,但由于我们无法完全认知或掌握它,而只能认为它是以某种概率分布于某个区域内的,且这种概率分布本身也具有分散性。测量不确定度是一个说明被测量之值分散性的参数,测量结果的不确定度反映了人们在对被测量值准确认识方面的不足。即使经过对已确定的系统误差的修正后,测量结果仍只是被测量值的一个估计值,这是因为,不仅测量中存在的随机因素将产生不确定度,而且,不完全的系统因素修正也同样存在不确定度。

不要把误差与不确定度混为一谈。测量不确定度表明赋予被测量之值的分散性,是通过对测量过程的分析和评定得出的一个区间。测量误差则是表明测量结果偏离真值的差值。经过修正的测量结果可能非常接近于真值(误差很小),但由于认识不足,人们赋予它的值却落在一个较大区间内(即测量不确定度较大)。

为了表征赋予被测量之值的分散性,测量不确定度往往用标准差表示。在实际使用中,由于人们往往希望知道测量结果的置信区间,因此测量不确定度也可用标准差的倍数或说明了置信水平的区间的半宽表示。并有3种定量表达形式:标准偏差、标准偏差倍数以及置信概率下的置信区间的半宽。

当需要某个具体定量表达时,采用如下术语:

(1)标准不确定度 以标准偏差表示的测量不确定度。

(2)扩展不确定度 确定测量结果区间的量,合理地赋测量结果,被测量之值以较大的概率分布在此区间内。

(3)合成不确定度 当测量结果是由若干其他量的值求得时,按其他各分量的方差或(和)协方差算得的标准不确定度。

4 测量误差与测量不确定度的区别

(1)量值由二者各自的定义可知,测量误差是一个量值,其符号只有一个,非正即负,且不能为正负(±);而测量不确定度的含义为一种区间,其符号恒为正。

(2)误差是一个定性概念,而不确定度是一个定量概念。从表面上看,测量误差是测得值减去真值,是一个定量概念。但实际上,由于被测量的真值是未知的理想化概念,因而误差也无法确切得知。只有通过某种方法对真值有一个约定时,误差才有量的概念。而测量不确定度则可以利用成熟的统计方法,完成对测量结果质量的评定,是可定量计算的。

(3)误差是客观存在的,不依人们的认识程度而改变;不确定度与人们对被测量和影响量及测量过程的认识程度有关。从本质上讲,测量误差反映的是测得值与真值的偏离,因此他只属于给定的测量结果,不论测量方法和测量条件如何,同一被测量的相同的测量结果,均有相同的误差。而测量不确定度并不表示这种偏离程度,他只反映对被测量值认识的不足,在重复性条件下,不同结果可以有相同的不确定度。

(4)测量误差和测量不确定度的来源不同。误差按其来源可分为:测量装置的基本误差、非标准工作条件下增加的附加误差、测量原理及实际操作不完善引起的方法误差、被测量值随时间变化产生的误差、被测量影响量变化引起的误差、人员有关的误差等。

测量不确定度的可能来源有:被测量的定义不完整;被测量定义值的复现不理想;被测量的样本不能完全代表定义的被测量;环境条件的不完善或对测量过程受环境条件影响认识不足;使用模拟式仪表时,人员的读数偏差;测量器具的分辨力和识别的限制;测量标准或标准物质的给出值的不准确;数据处理时所引用的常数或其他参数的不准确;测量系统、测量方法、测量程序的不完善;在相同条件下,被测量重复观测值的随机变化;误差修正的不完善。

(5)测量误差按出现于测量结果中的规律分为系统误差、随机误差和粗大误差。粗大误差应予剔除。随机误差和系统误差均是无穷多次测量时的理想概念。测量不确定度不按性质分类,不存在“随机不确定度”和“系统不确定度”。需要时,可表述为“由随机影响引入的不确定度分量”和“由系统影响引入的不确定度分量”。不确定度评定时,要剔除测量值中的异常值。不确定度的评定方法可分为A类评定和B类评定。A类不确定度是用统计分布方法评定的不确定度,B类不确定度是用其他方法评定的不确定度。需要说明的是,将标准不确定度区分为A类、B类的目的,只是说明计算方式不同,以便于研究,并非说明两种方法所得的分量不确定度在本质上存在差异。

(6)测量误差由各误差分量的代数和合成,而测量不确定度当分量彼此独立时,为分量的方根和,必要时加入协方差。

(7)测量误差的实验标准差来源于某给定的测量结果,所表述的并非被测量的估计值的随机误差;而测量不确定度的实验标准差来源于合理赋予被测量值,即大量的测量结果,表述同一观测列中任一个估计值的标准不确定度。

(8)已知系统误差的估计值时,可以对测量结果进行修正,得到修正后的测量结果。但不能用不确定度对测量结果进行修正。对已进行误差修正的测量结果,测量不确定度评定时应考虑修正不完善引入的不确定度分量。

5 测量不确定度较测量误差在评定测量结果中的优势

(1)系统误差和随机误差一方面在某些情况下特别是条件较为复杂时难以区分;另一方面,两类误差在一定条件下亦会相互转化;同时受测量人员主观判断的影响,很难一致;在很多时候,不能全面掌握系统误差的信息。测量不确定度按评定方法分类避免了测量误差按性质分类所引起的混乱和不统一。

(2)由于测量不确定度只与测量条件有关,在相同条件下对同一被测量进行连续多次测量所得一系列测得值可能不同,但都有相同的不确定度。而测量误差只与测量结果有关,测量列中每个测得值都有各自的测量误差,假设不存在系统误差和粗大误差,只考虑随机误差,由于每个测得值所含随机误差无法确定,故只能以统一的极限值代之。可见从逻辑上讲,测量不确定度的概念较为合理、简略,易于接受。

(3)由于测量不确定度避免了作为理想概念而不可知的真值,且只与测量条件有关,故它可通过对影响测量的诸多因素的分析得出,较之测量误差更便于量化评定。

(4)由于测量不确定度是绝对值,避免了测量误差中随机误差的表述与误差定义不相符的矛盾。

(5)测量误差与测量不确定度都是测量结果质量评定的方法,但两者的出发点不同。测量不确定度是利用分散性尺度来评价测量结果质量,而误差则是以测量结果与真值(或者是约定值)的差别来评价测量结果的质量。不同的出发点导致了评价方法上的一系列不同。由于被测量真值往往不可知,误差的定义不够明确,从而衍生出一系列问题。如误差的分类不统一,计算误差的方法不统一,随机误差和系统误差的争议等,以及不同地区不同专业对以误差表示的测量结果认识不统一,往往引起经济或贸易上的纠纷。

6 测量不确定度与误差的联系

不确定度与误差是两个截然不同的概念,但他们之间有着密切的联系。

(1)误差是不确定度的基础,尽管不确定度概念的引入使误差分类的界限及其转化的问题淡化了,但评定和计算不确定度,还有赖于必要的误差分析。只有对各个误差源的性质、分布进行合理的分析和处理,才能确定出各分量的不确定度和合成不确定度。

(2)不确定度是误差的综合和发展,不确定度概念的引入使不能确切知道的误差转化为一个可以定量计算的指标附在测量结果中,从而使测量结果的质量有了一个统一的比较标准。

[1]张前勇,孙海燕.测量误差与测量不确定度表述方法的研究[J].测绘工程,2003,(3).

[2]于献忠 质量专业综合知识[M].北京:中国人事出版社,2006.

猜你喜欢
真值系统误差分散性
搅拌对聚羧酸减水剂分散性的影响
纳米SiO2粉体在水泥液相中的分散性
基于ADS-B的航空器测高系统误差评估方法
基于Bagging模型的惯导系统误差抑制方法
10kV组合互感器误差偏真值原因分析
电子制作(2017年1期)2017-05-17 03:54:35
存在系统误差下交叉定位系统最优交会角研究
sPS/PBA-aPS共混体系的相容性及分散性研究
中国塑料(2016年4期)2016-06-27 06:33:40
真值限定的语言真值直觉模糊推理
基于真值发现的冲突数据源质量评价算法
基于奇异谱的精密离心机空气轴承主轴回转系统误差分析