焦可如,张志军,王晓琴
(1.沈阳理工大学 机械学院,沈阳 110159;2.河南省煤田地质局四队,平顶山 467000)
随着当今制造业不断向自动化、复杂化和规模化方向发展,在实际产品生产过程实施之前,需要对实际生产系统进行准确详实的仿真和预测。从而按照TQCSE[1~3]现代企业的要求,即以最快的上市速度(T-time to market)、最好的质量(Q-quality)、最低的成本(C-cost)、最优的服务(S-service)和最佳的生产环境(Environment)来满足不同顾客的需求,使产品的实现具有快速和柔性的特征。又由于近年来计算机技术、网络技术、数据库技术,Agent技术和系统仿真技术的迅速发展,20世纪80年代首先由美国提出了虚拟制造技术这个全新的理念。因此说虚拟制造是现代科学技术和生产技术发展的必然结果,是各种现代制造技术与系统发展的必然趋势。主要能够有效地解决以下问题:
1)在无法投入大量的人力物力的情况下,在制造系统正式建立和运营之前,对其进行有效的评估和预测,从而降低制造系统的投资成本和风险。
2)在新产品开发的各个阶段,把握从开发设计、加工制造、市场运营、再回收等各阶段实际情况,及时有效地协调各方面的关系,以达到全体最优效益。
3)能够实现信息集成、技术集成、资源集成、智能集成、企业内部的各个工作机制的集成,实现分布式智能协同求解,达到全局最优的目的。
虚拟制造的基本思想是在产品制造过程的上游——设计阶段就进行对产品制造全过程的虚拟集成,将全阶段可能出现的问题解决在这一阶段,通过设计的最优化达到产品的一次性制造成功。
虚拟制造是利用信息技术、仿真技术和计算机技术对现实制造活动中的人物、信息及制造过程进行全面的仿真,以预先发现制造过程中的问题,在产品实际生产前就预防措施,从而达到产品一次性制造成功,来达到降低成本、缩短产品开发周期和增强产品竞争力的目的。
虚拟制造是基于虚拟现实技术[4]来实现的。它是在一个统一的模型之下对设计和制造等过程集成,将与产品制造相关的各种过程与技术集成在三维的、动态的仿真真实过程的实体数字模型之上,其目的是在产品设计阶段,借助建模与仿真技术及时地、并行地模拟出产品未来制造过程乃至产品全生命周期中各种对产品设计的影响、预测、检测、评价产品性能和产品可制造性等,从而更有效的、经济的、柔性的来进行生产,使得生产周期和成本最低、产品设计质量最优,生产效率最高。
它是多学科、多领域知识的综合,其产生的虚拟产品和虚拟制造系统,要在计算机上以直觉、生动精确的方式体现出来,它拥有产品和相关制造过程的全部信息,包括虚拟设计、制造和控制产生的数据、相关知识和模型信息。虚拟制造系统按照功能归结为三种不同类型的子环境,共同构成中心三元耦合的、互相关联的系统模式。它们分别是:
1)虚拟制造设计中心:给设计者提供各种工具以便虚拟设计、虚拟制造,设计出符合设计准则的产品模型。
2)虚拟制造加工中心:研究开发产品制造过程模型和环境模型及分析各种可行的生产计划和工艺规化。
3)虚拟制造控制中心:评价产品设计、产品原型、生产计划、制造模拟和控制策略等。
虚拟制造技术是多学科技术的系统集成。其关键技术[5]主要包括建模技术、仿真技术、智能设计技术、可制造评价等。虚拟制造依靠建模与仿真技术来模拟制造、生产和装配过程,使设计者在计算机上模拟出产品的整个过程。建模与仿真是虚拟制造的基础,虚拟制造是建模与仿真的应用,它拓展了传统的建模与仿真。
虚拟制造系统VMS是现实制造系统RMS在虚拟环境下的映射,是RMS的模型化、形式化的抽象的描述和表示。VMS的建模是生产模型、产品模型和工艺模型的信息体系。
生产模型归纳为静态描述和动态描述两方面,静态描述是指系统生产能力和生产特征的描述。动态描述是指在已知系统状态和需求特征的基础上预测产品生产的全过程。
生产模型是在加工过程中,各类实体对象模型的集合。产品模型包括毛坯、中期产品模型、目标产品模型。对于一个VMS来说,只有具备完备的产品模型,才能使产品实施过程中的全部活动集成。
将工艺参数与影响制造的产品设计属性联系起来,反应生产模型与产品模型之间的交互作用,工艺模型必须具备以下功能:计算机工艺仿真、制造数据表、制造规划、统计模型以及物理和数学模型。
仿真就是应用计算机对复杂的现实系统经过抽象和简化形成系统模型,然后在分析的基础上运行此模型,从而得到系统一系列的统计信息。仿真的基本步骤是:研究系统→收集数据→建立系统模型→确定仿真算法→建立仿真模型→运行仿真模型→输出结果并分析。
产品制造过程仿真,可归结为制造系统仿真和加工过程仿真。产品仿真的基本思想是:通过对设计和产品加工过程等的仿真,在产品设计和生产的上游,对设计结果进行反馈和评估,实现产品的优化设计。加工过程仿真包括切削过程仿真、装配过程仿真及检验过程仿真等。
虚拟现实技术[6]是一种由计算机生成的动态虚拟环境,人通过适当的接口置身其中,可以参与和操纵虚拟环境中的仿真物理模型,并且可以和过去的、现在的或虚拟的人物进行交互,它通过各种虚拟设备如立体显示系统、听觉系统、触觉系统与力反馈设备等刺激人体的各个感知器官,使人能与系统交互(interaction),产生沉浸感(immersion),对系统进行构想(imagination)。交互、沉浸感和构想是虚拟现实技术的基本特征。在生产过程中通过虚拟现实技术对产品及其制造过程的仿真,可以实现在实际生产活动开始之前完成产品生产的可行性分析,使人从主观上产生虚拟产品及制造过程的存在感,在虚拟制造环境中通过对“产品生命全程的预演”加深人们对制造过程的正确理解和直观感受。
虚拟制造是多学科、多领域的综合,虚拟产品及整体虚拟制造系统需要在计算机上以直观、生动的精确方式显现出来。因此,虚拟现实技术是虚拟制造的重要组成部分。
美国波音公司运用虚拟制造技术研制波音777喷气式客机,投资40亿美元,从1990年10月开始到1994年6月仅用了3年零8个月的时间就完成了研制。一次试飞成功,投入运营,其开发周期由原来的8年减至5年。
1993年初,日本大阪大学的岩田一明[7](kazuaki Iwata)博士及其领导的研究小组应用面向对象程序设计的方法与计算机三维建模技术开发了名为Virtual Works 的软件工具。
1994年,日本Matsushita公司成功开发了基于虚拟空间支持工具的快速响应用户和市场需求的厨房设备生产系统[8]。该系统允许消费者在购买商品之前,在虚拟厨房环境中体验不同设备的功能,可以按照自己的喜好评价、选择和重组这些设备。用户的这些操作信息将被存储并通过网络发送到生产部门。
德国宝马汽车公司为车门装配设计的虚拟装配系统能识别语音输入完成相应操作,并能对干涉碰撞发声报警。
美国开发的虚拟原型制作系统,它允许设计者对这一原型进行评价,如对汽车的虚拟原型设计,设计者可以走入这一原型,测试汽车在虚拟公路上的行驶性能,体验驾驶者驾驶时的感觉,感受视野是否开阔等等。
世界最大的挖土机和建筑设备制造业企业Caterpillar Inc[9]将虚拟制造技术用于反铲装载机的开发,在虚拟环境下,技术人员推翻了原构想可行的三个方案中的两个不合理的设计方案,不仅确立了正确的设计方案,节约了研究其他两种机型所用的时间和费用,而且缩短了开发周期,降低了生产成本。
我国三一重机公司CAE工程师采用虚拟样机技术平台建立了单斗反铲液压挖掘机整机模型,得用机械、液压及控制系统模型进行联合仿真,在计算机上模拟挖掘、提升、转向、卸土等作业工况,对液压缸的摩擦力、油缸的动作速度、结构件的强度等级指标进行了仿真。通过调整液压元件各个参数,对液压系统进行了优化,进而提升了作业效率。该公司利用虚拟样机技术,结合Craig2Bampton模态综合法,对挖掘机的斗杆进行刚耦合分析及结构优化设计,解决了20吨级挖掘机斗杆开裂问题,成功研发了SY235型新产品。图1是20吨级新结构斗杆薄弱处的Mises应力的分析结果。
图1 新结构斗杆薄弱处的Mises应力分析[10]
本文论述了虚拟制造的产生背景、虚拟制造的内涵及基本思想。指出虚拟制造的关键技术及虚拟制造技术在实际生产中的应用。它是未来制造业发展的趋势,采用虚拟制造系统来完成产品的整个生命周期的设计、生产、评价、检验等,达到缩短开发周期节约生产成本之目的。
通俗地说,虚拟制造就是在计算机上实现产品、生产系统的设计、开发、制造和质检的全过程。也就是说它是一种通过计算机虚拟模型来模拟和预估产品功能、性能及可加工性等各方面可能存在的问题的技术。它为工程师们提供了从产品概念的形成、设计到制造全过程的三维可视及交互的环境,使得制造技术走出主要依赖于经验的狭小天地,发展到了全方位预报的新阶段。应用各种计算机技术、信息技术等实现面对产品全生命周期的开发设计及评价的系统过程。包括虚拟现实技术、智能化设计和仿真建模技术等。其中,建模、仿真技术是虚拟制造的核心技术。
随着计算机技术、信息技术及各种智能化技术的迅猛发展,必将使虚拟制造技术得到更为广泛的应用,从而推动与此项技术紧密相关的制造业及其它行业的飞速发展。
[1] 肖田元. 虚拟制造及其在轿车数字化工程中的应用[J].系统仿真学报, 2002, 14(3): 342-347.
[2] 宋天虎. 积极发展适合我国国情的虚拟制造技术[J]. 中国机械工程, 1998, 9(11): 56-59.
[3] 李志辉, 查建中, 鄂明成, 等. 虚拟制造开放式层次化体系结构的研究[J]. 北方交通大学学报, 2003, 27(1): 6-11.
[4] Kimura F. Product and Process Modeling as a Kernel for Virtual Manufacturing Environment[J]. Annual of the CIRP, 1993, 42(1): 85-93.
[5] 邵立, 钟廷修. 虚拟制造及其应用[J]. 上海交通大学学报, 1999, 33(7): 906-911.
[6] 陈定方, 罗亚波. 虚拟设计[M]. 北京: 机械工业出版社,2002.
[7] Iwata K, Onosato M, Teramoto K, et al. A Modeling and Simulation Architecture for Virtual Manufacturing Systems[J]. Annals of the CIRP, 1995, 44(1): 399-402.
[8] Weyrich M, Drews P. An Interactive Environment for Virtual Manufacturing: the Virtual Workbench[J]. Computers in Industry, 1999, 38(1): 5-15.
[9] I wata K, Onosato M, Teramoto K, et al. Virtual Manufacturing Systems as Advanced Information Infrastructure for Integrating Manufacturing Resources and Activities[J]. Annals of the CIRP, 1997, (1): 335-338.
[10] 戴晴华, 易迪生, 田文胜, 等. 虚拟制造技术及其在工程机械中的应用[J]. 中国机械工程学报, 2010, 8(2): 184-189.