智能电网环境下典型行业的动态无功补偿与谐波治理综述

2012-06-01 06:58广东省输变电工程公司沈志伟
电子世界 2012年21期
关键词:风电场谐波电动汽车

广东省输变电工程公司 沈志伟

智能电网环境下典型行业的动态无功补偿与谐波治理综述

广东省输变电工程公司 沈志伟

电压和谐波是电能质量的重要指标。随着智能电网的逐步深入,电力系统无功补偿和谐波问题面临更大挑战。本文选取了智能电网最具代表性的风力发电、电动汽车、轨道交通3个行业领域,着重对负荷特征、需求分析、经济技术分析3个内容进行了综述和 讨论。分析结果表明,SVG型无功补偿装置和APF型谐波治理装置在综合性能和经济性上的平衡优势,是建设智能电网的关键组件。

智能电网;动态无功补偿;谐波治理

1.引言

电压和谐波是电能质量的重要指标。电压水平直接反映为无功的平衡程度。机械式投切电容器和电抗器为代表的第一代静态无功补偿装置以及同步调相机为代表的第一代动态无功补偿装置,具有结构简单、经济方便的优点,在国内外获得广泛应用。由于机械开关响应速度(10-30s)无法跟踪负荷无功电流的快速变化,且易引起冲击涌流和操作过电压,70年代晶闸管等电力电子器件取代机械开关,诞生了第二代无功补偿装置,代表设备有晶闸管投切电容器TSC、晶闸管控制电抗器TCR和磁控电抗器MCR。第二代装置在调节响应速度上大大提升,但仍属于阻抗型装置,补偿性能受制于系统参数,且TCR/MCR本身就是谐波源,易产生谐波振荡放大等严重问题。70年代末,通过大功率电力电子器件高频开关实现无功能量变换的第三代无功补偿装置—自换相技术静止无功补偿装置(Static Var Generator,SVG)诞生,实现了无功补偿功能的飞跃。

智能电网(Smart Grids)是应用智能传感和测量技术、设备技术、控制方法及决策支持系统技术,以实现电网可靠、安全、经济、高效、环境友好和使用安全为目标的电网智能化,其主要特征包括自愈、激励用户、抵御灾害、满足用户高电能质量需求、容许各种不同发电形式的接入、资产的优化高效运行等。无功补偿和谐波问题在智能电网环境下面临了新挑战:1)电力电子器件和智能组件大量应用,使得无功补偿和谐波问题更加复杂;2)电力负荷对电压和谐波指标提出了更高要求;3)智能电网特性要求无功补偿和谐波治理设备更智能、更快速响应、更高效。因此,研究智能电网环境下典型行业的动态无功补偿与谐波治理具有重要现实意义。

本文选取了智能电网最具代表性的风力发电、电动汽车和轨道交通3个行业领域,对其发电或负荷特征、需求分析、经济技术分析3个内容进行了详细讨论。分析结果表明,SVG型无功补偿装置和APF型谐波装置在综合性能和经济性上的平衡优势,是建设智能电网的关键组件。

表1 可供风电场选择的无功补偿方式经济技术分析

表2 电动汽车谐波防治方式经济技术分析

2.风力发电

2.1 发电特征

风速、风向的不确定性以及风电机组的运行特性(风电机组类型复杂多样,其中感应异步电机型风电机组数量众多),使得风电机组输出功率是随机波动的,导致并网功率因数不合格、电压波动和稳定性差等问题,严重时可导致节点电压暂降。辅助组件大量采用电力电子器件,产生大量谐波电流。

2.2 智能电网环境下的需求分析

风力发电是世界各国智能电网战略的重要内容之一。智能电网环境将极大促进各类型、各规模风电场快速发展(发电容量比重超过10%),因此目前风力发电的低效、脆弱和低可靠性问题必须得以解决,使得:

1)满足风电场接入系统的稳定性要求,补偿传输线路、升压变压器和风电机组无功损耗,保持功率因数在0.95以上;

2)减少系统电压的波动对风机的影响,减少切机次数;

3)使风电场具有较好的低电压穿越能力;

4)配套装置成熟高效、维护简单、 成本适中。

2.3 经济技术分析

可供风电场选择的无功补偿装置主要有以下几类:①分组电容器;②串联电抗器;③TCR型或MCR型可调式电容器组(SVC);④SVG;⑤SVG+FC(补偿电容器组)5种类型。此5种类型无功补偿装置的经济技术分析 对比如表1所示。在目前工程实际中,通常取方案②或取经济技术指标折中的方案⑤,进而根据需要合理设计补偿装置容量:

1)对于接入节点为电网关键节点的风电场或大型风电场,须以潮流计算为依据,并充分考虑系统现有补偿能力和风机无功调节能力,以确定无功补偿容量,目前我国西北风电基地常用的补偿方案为SVC+FC,SVC单独运行。

2)对于中小型风电场,考虑到其对电网影响相对较小,可按以下原则设计:对于恒速恒频风电机,补偿容量可按风电场装机容量的50%-60%设计;对于变速恒频风电机,补偿容量可按风电场装机容量的30%-40%设计;对于直驱同步风电机,补偿容量可按风电场装机容量的20%-30%设计;补偿方案通常选较经济的MCR型SVC。

3.电动汽车

3.1 负荷特征

主要负荷为电动汽车充电机和充电站系统。其负荷特征主要有:

1)电动汽车充电机和充电站系统为非线性负载,充电过程中将给电网注入较大谐波电流,谐波次数主要为6 1k±次,k=1,2,3,…,即5次、7次、11次、13次等奇次谐波,次数越高,谐波幅值越小。

2)谐波与基波关系不固定,负载越轻,则谐波越大,基波越小;滤波电感越大,则谐波越小,基波越大。

3)大规模保有量的电动汽车实际充电行为是随机的,导致电力系统多个变电站负载率随机波动,常规无功补偿难以应对。

3.2 智能电网环境下的需求分析

目前常用电动汽车充电设备主要有以下两类:

1)不控整流设备+DC/DC变换器。优点是体积小、直流侧电压纹波小、动态响应快、高频隔离,缺点是变换效率低、电网侧电流总畸变率大(在30%左右),5次、7次、11次和13次等奇次谐波超出国标要求。

2)PWM整流设备+DC/DC变换器。优点是体积小、输出纹波低、动态性能好、功率因数高、变换效率高、电网侧电流总畸变率低,不需要配置的谐波治理装置,但由于目前价格昂贵,应用较少。

电动汽车是世界各国智能电网战略的重要内容之一。电动汽车与智能电网相互影响、共同推动。智能电网环境极大促进电动汽车以及各规模充电机(站)快速发展(我国规划目标是2020年电动汽车保有量达到500万辆以上);电动汽车充放电特性可有效平抑电网负荷峰谷波动、接纳间歇性能源以及提高电网利用效率。因此目前电动汽车充电的低效、低可靠性、对电网电能质量影响大、造价昂贵等问题必须得以解决。

3.3 经济技术分析

可供电动汽车充电机(站)选择的谐波防治装置主要有以下几类:①无源滤波器;②有源滤波器(APF);③无源+有源混合性滤波器3种类型。此3种类型谐波防治装置的经济技术分析对比如表2所示。

在目前工程实际中,基于经济技术性能的综合考虑,通常取方案②或取经济技术指标折中的方案③,进而根据需要合理设计补偿装置容量,其容量设计公式为:

式中:K为可靠系数,取1.05-1.20;η为充电机充电效率;ξ为充电机在交流电源输入端产生的谐波电流含有率;S充为单台充电机功率。

对于充电容量较大的充电站,还需考虑电力系统周边电容性补偿容量引发5次、7次谐振的可能,在规划工作中需做进一步做测试分析,必要时需考虑对电容性补偿容量进行改造(改为4.5%或6%电抗率)。

4.轨道交通

4.1 负荷特征

主要负荷为轨道交通的牵引和辅助供电系统。其负荷特征主要有:

1)行车频率的不连续性引起牵引负载率变化大,主变无功损耗和负荷电流变化大,因此,主变所需补偿容量变化范围大,需采用可靠的动态无功补偿装置。

2)在负载率较轻时(行车间隙),无功功率过剩,功率因数低;在负载率较重时(行车期),无功功率不足,功率因数同样低。

3)列车在行车过程中加速、制动、乘客人数、坡度、操作等因素亦使得牵引负荷随机波动。

4)轨道交通普遍存在多条线路由同一变电站供电的现象,受各条线路规划先后影响,供电网络规模和供电线路长度逐年增长,供电网络充电功率变化导致无功补偿需求变化。

5)城市轨道交通供电系统通常采用环网方式,且运行方式复杂,对无功补偿要求高。

4.2 智能电网环境下的需求分析

轨道交通是电动汽车在有轨公共交通领域的延伸,在欧洲、美国和我国有着重要战略地位。近年来,我国城市轨道交通迅猛发展,截止2012年,城市轨道线路五十余条,运营里程约1600公里,预计到2015年全国22个城市拥有79条城市轨道线路,运营里程2259.84公里。因此轨道交通的高速发展、高速大牵引力机车对电网的影响、合理控制造价等问题必须得以解决,使得:

1)经济且合理地补偿轨道交通的牵引和辅助供电系统的无功需求;

2)不对接入的城市电网产生谐波污染;

3)运行损耗小,节能降耗效果显著;

4)占地、电磁干扰等满足城市设施建设指标。

4.3 经济技术分析

可供轨道交通选择的无功补偿装置主要有以下几类:①分组电容器;②TCR型或MCR型SVC;③SVG;④SVG+FC;⑤有源电力滤波器(APF)5种类型,类型①-④的经济技术分析详见表1-1,类型⑤是一种特殊的SVG,经济技术性能可参考③。

在目前城市轨道交通工程实际中,由于SVG占地面积小、布置和扩展灵活、无需配套加装滤波设备的优点,使得采用SVG设备的方案在施工建设总投资费用上要优于采用SVC设备方案。

此外,SVG具有不产生谐波;运行损耗小;运行噪声低;电磁干扰小;具有快速电压支撑能力,可以充分提高牵引供电能力、提高牵引变压器等设备的利用率等突出优点,因此,不同于风力发电领域补偿方案选择的多样化,采用SVG设备的方案是城市轨道交通领域的最优选择。

5.结论

本文选取了智能电网最具代表性的风力发电、电动汽车、轨道交通3个行业领域,对其发电或负荷特征、需求分析、经济技术分析3个内容进行了详细讨论。分析结果表明,非线性、随机型负荷大量涌现是智能电网重要特征,现有传统无功补偿装置和谐波治理装置难以应对,SVG型无功补偿装置和APF型谐波治理装置在响应速度、可靠性等综合性能以及土地和空间占用、损耗、运行维护费用等经济性指标上的具有更好的平衡优势,可作为智能电网建设的关键组件。

本文目前仅就典型行业动态无功补偿和谐波治理中的负荷特征、需求分析、经济技术分析等问题进行了综述。事实上,在行业规模(如不同规模风电场的差异、电动汽车充电站规模差异)、设计差异(如周边电容性补偿容量对电动汽车充电站谐波治理装置容量设计的影响、城市空间对轨道交通补偿设备土地和空间的限制)、需求差异(如电动汽车分散式充电桩和集中式充电站)等问题上,动态无功补偿和谐波治理的规划设计工作存在差别,其研究对于工程实际具有重大价值,本文因篇幅问题留作后续详细讨论分析。

[1]鄢家财.静止无功发生器(SVG)的研究及应用[D].兰州:兰州理工大学,2011.

[2]百度百科.有源电力滤波 器[EB/OL].http://baike.baidu.com/view/605245.htm.

[3]百度百科.智能电网[EB/OL].http://baike.baidu.com/view/2222513.htm.

[4]石新春,杨京燕,王毅.电力电子技术[M].北京:中国电力出版社,2006.

[5]罗斌,綦光泽.大型风机并网的电能质量问题及解决方案[J].电力设备,2008,9(10):19-23.

[6]石巍,张彦昌,张超.风电场无功补偿容量设计与补偿方式研究[J].电力勘测设计,2011(3):76-80.

沈志伟(1983—),男,广东兴宁人,电气工程硕士,工程师,现供职于广东省输变电工程公司,主要从事电力设计方面工作。

猜你喜欢
风电场谐波电动汽车
纯电动汽车学习入门(二)——纯电动汽车概述(下)
电动汽车
基于PSS/E的风电场建模与动态分析
现在可以入手的电动汽车
电网谐波下PWM变换器的谐波电流抑制
含风电场电力系统的潮流计算
虚拟谐波阻抗的并网逆变器谐波抑制方法
含大型风电场的弱同步电网协调控制策略
基于ELM的电力系统谐波阻抗估计
基于ICA和MI的谐波源识别研究