胡步宏 贾中正 耿道颖
低级别胶质瘤(low-grade glioma,LGG)与反应性胶质增生(reactive gliosis,RG)影像特征相似,在常规CT/MRI上很难鉴别,而两者的治疗方案明显不同。LGG容易恶变成间变性胶质瘤,甚至是胶质母细胞瘤。一旦诊断为LGG,必须尽早手术切除。RG是胶质细胞在数量上的增加,很少恶变(即使恶变成胶质瘤,也需要很长时间),所以RG只需要随访,不需要手术。因此,LGG与RG的准确鉴别对于患者的治疗计划与预后评估异常重要。近年来有关胶质瘤表观弥散系数(ADC)值的研究报道越来越多。因此,我们设想ADC值在鉴别LGG与RG方面可能存在价值。本研究目的是探讨最小相对ADC(rADCmin)值在LGG与RG鉴别诊断中的价值。
收集经病理证实的58例LGG(WHO Ⅱ级)和11例RG患者,其中男40例,女29例,年龄10~69岁,平均36.2岁。在MRI检查前所有患者未进行过干预治疗,每例患者均在MRI检查后一周内手术。
所有MRI检查均在GE3.0 M R扫描仪 (Signa VH/I,GE Healthcare,Milwaukee)上进行,扫描使用8通道头颈线圈。常规MRI包括FLAIR(TR/T E/T I 8502ms/124ms/2250ms,层厚 5mm,间隔 2mm,矩阵288×224,FOV24.0×24.0cm,2次采集);T1-FLAIR(T R/TE/T I2205ms/18.3ms/860ms,层厚5mm,间隔 2mm,矩阵 320×224,FOV24cm×18cm,2次采集);T2WI(T R/TE,3600/114ms,层厚5mm,间隔2mm,矩阵416×224,FOV24cm×18cm,2次采集);T1-FLAIR增强与弥散加权成像(DWI)。DWI使用自旋回波平面序列,(T R/T E4800ms/73.4ms,层厚5mm,间隔2mm,矩阵 128×128,FOV24cm×24cm,2次采集,b值为0和1000s/mm2)。
两名经验丰富的放射科医师手工设置感兴趣区,在ADC图中最低信号区测量病变的ADCmin值,测量三次,取平均值。rADCmin值为病变的ADCmin值与对侧正常脑白质ADC值的比值。
采用SPSS16.0 统计软件进行数据处理,所有计量资料用表示。采用Mann-Whitney检验分析LGG与RG之间的差异性;检验水准以P<0.05为差异有统计学意义。ROC曲线分析用于诊断LGG的临界值、敏感性和特异性。
LGG的平均rADCmin为1.465±0.357,高于RG(1.062±0.120)(P<0.05)。ROC曲线下面积为0.912,当临界值rADCmin=1.193时,诊断LGG的敏感性为 82.8%,特异性为100%(图 1)。
胶质瘤是中枢神经系统最常见的肿瘤,其中LGG肿瘤细胞分化良好,伴有较多的胶质纤维,并含有较多的微囊变。LGG的常规CT/MRI缺乏特异性,很容易与RG、不典型脑梗死、脑炎和脱髓鞘病变混淆[1-2];尤其是RG,与LGG的临床和影像特征非常相似。RG是在感染、中毒、外伤、缺血缺氧、辐射等因素的刺激下发生的胶质细胞增生,属良性病变[3-7]。RG在病理上主要表现为胶质细胞的增生、变性伴胶质瘢痕形成,常伴有各种炎性细胞浸润。影像表现缺乏特异性,与LGG相似,两者的鉴别很难[8-11],最终需病理确诊。但是两者的生物学行为差异很大,治疗方案也明显不同。
近年来,DWI与ADC值在中枢神经系统的应用越来越广泛。ADC值是通过DWI计算得来的变量参数,利用细胞外水分子运动(布朗运动)的高斯分布特性进行成像,能够提供正常脑与脑病变的解剖和生理信息[12-13]。研究已发现,ADCmin值在胶质瘤与淋巴瘤、脑转移瘤、各种囊性病变的鉴别诊断中具有重要价值[14-17],同时ADCmin值也可以区分胶质瘤的各种成分,包括肿瘤实质、囊变与坏死、瘤周水肿[18-20]。但是有关RG ADC值的报道很少,Hagen等[21]研究发现ADC值在区分血管源性水肿与RG方面存在价值,说明ADCmin值在区分细胞成分与囊性成分方面存在优势。研究发现,细胞数量增加或体积增大,可提高细胞密度,使细胞外水分子的弥散空间减小,弥散受限,ADC值将减低[22-23]。本研究中,LGG的rADCmin值(1.465±0.357)大于 RG(1.062±0.120)(图 2,3),说明LGG与RG尽管都有细胞密度增高,但两者之间还是存在着差别,很可能是病理上的细微差别;LGG在病理上不同于RG的主要差别之一就是LGG存在较多的微囊变,细胞外空间增大,这很可能引起水分子弥散能力增强,引起ADC值的升高。有人研究发现由于高级别胶质瘤(high-grade glioma,HGG)实质部分的ADC值低于LGG实质部分的ADC值,就是因为前者的细胞密度大,细胞外空间减小,水分子弥散受限,所以利用ADC值与胶质瘤分级存在的负性关系,可以对胶质瘤的术前分级提供一定的参考价值[24-27]。同样,淋巴瘤和髓母细胞瘤的细胞密度大,其ADC值远小于胶质瘤[14,28]。已经有报道,可以通过测量胶质瘤瘤周水肿的ADC值来研究颅内肿瘤的鉴别诊断,但目前存在争议[15,20,29]。所以ADC值在中枢神经系统疾病的诊断与鉴别诊断中扮演着相当重要的角色。本研究的限制:第一,由于胶质瘤有时成分不均匀,可以同时含有不同级别的成分,而用于分级的组织标本不一定就是rADCmin对应的肿瘤部分,容易造成分级偏差。第二,DWI技术以水分子的高斯分布为前提,不能真正反映细胞膜、大分子等脑内微结构的复杂性。
总之,由于rADCmin能够反映LGG与RG在病理组成上的细微差别,所以rADCmin值在LGG与RG的鉴别诊断中能够提供重要的临床价值,有利于降低误诊率,提高患者的预后评估。
1.Pui MH,WangY.Diffusion and magnetization transfer MRI of brain infarct,infection,and tumor in children.Clin Imaging,2005,29:162-171
2.Giussani C,Poliakov A,Ferri RT,et al.DTI fiber trackingto differentiate demyelinatingdiseases from diffuse brain stem glioma.Neuroimage,2010,52:217-223
3.Heindel WC,Jernigan TL,ArchibaldSL,et al.The relationship ofquantitative brain magnetic resonance imagingmeasures to neuropathologic indexes of human immunodeficiency virus infection.Arch Neurol,1994,51:1129-1135
4.McMillian MK,Thai L,HongJS,et al.Brain injuryin a dish:a model for reactivegliosis.Trends Neurosci,1994,17:138-142
5.Faulkner JR,Herrmann JE,Woo MJ,et al.Reactive astrocytes protect tissue andpreserve function after spinal cord injury.J Neurosci,2004,24:2143-2155
6.Wasserman JK,Yang H,Schlichter LC,et al.Glial responses,neuron deathand lesion resolution after intracerebral hemorrhage in young vs.aged rats.Eur J Neurosci,2008,28:1316-1328
7.Hwang SY,Jung JS,Kim TH,et al.Ionizing radiation induces astrocyte gliosis through microglia activation.Neurobiol Dis,2006,21:457-467
8.Cazenave C,Reid S,Virapongse C,et al.Reactive gliosis simulating butterfly glioma:a neuroradiological case study.Neurosurgery,1986,19:816-819
9.Mautner VF,Pressler M,Funsterer C,et al.Cerebral MRT in neurofibromatosis:gliosis versus neoplasia?Rofo,1989,151:225-228
10.Rogers LR,Weinstein MA,Estes ML,et al.Diffuse bilateral cerebral astrocytomas with atypical neuroimagingstudies.J Neurosurg,1994,81:817-821
11.Nishioka H,ItoH,Miki T.Difficulties in the antemortem diagnosisofgliomatosiscerebri:report of a case withdiffuse increase of gemistocyte-like cells,mimicking reactive gliosis.Br J Neurosurg,1996,10:103-107
12.Beaulieu C.The basis of anisotropic water diffusion in the nervous system-a technical review.NMR Biomed,2002,15:435-455
13.Chenevert TL,Sundgren PC,Ross BD.Diffusion imaging:insight to cell status and cytoarchitecture.NeuroimagingClin N Am,2006,16:619-632,viii-ix
14.Horger M,Fenchel M,Nagele T,et al.Water diffusivity:comparison ofprimaryCNS lymphoma and astrocytic tumor infiltratingthe corpus callosum.AJR,2009,193:1384-1387
15.Server A,Kulle B,Maehlen J,et al.Quantitative apparent diffusion coefficients in the characterization of brain tumors and associatedperitumoral edema.Acta Radiol,2009,50:682-689
16.Reiche W,Schuchardt V,Hagen T,et al.Differential diagnosis of intracranial ring enhancing cystic mass lesions--role of diffusion-weighted imaging(DWI)and diffusion-tensor imaging(DTI).Clin Neurol Neurosurg,2010,112:218-225
17.Murakami R,Hirai T,Sugahara T,et al.Grading astrocytic tumors byusingapparent diffusion coefficientparameters:superiorityof a one-versus two-parameterpilot method.Radiology,2009,251:838-845
18.Pavlisa G,Rados M,Pavlisa,G,et al.The differences of water diffusion between brain tissue infiltrated bytumor andperitumoral vasogenic edema.Clin Imaging,2009,33:96-101
19.Li M,Jia ZZ,Gu HM,et al.plication of apparent diffusion coefficient and fractional anisotropyin identification of tumor component andgradingof brain astrocytoma.Zhonghua Yi Xue Za Zhi,2008,88:3352-3355
20.Guzman R,Altrichter S,El-KoussyM,et al.Contribution of the apparent diffusion coefficient inperilesional edema for the assessment of brain tumors.J Neuroradiol,2008,35:224-229
21.Hagen T,Ahlhelm F,Reiche W.Apparent diffusion coefficient in vasogenic edema and reactive astrogliosis.Neuroradiology,2007,49:921-926
22.Yamashita Y,Kumabe T,Higano S,et al.Minimum apparent diffusion coefficient is significantlycorrelated with cellularityin medulloblastomas.Neurol Res,2009.,31:940-946
23.Jenkinson MD,du Plessis DG,Smith TS,et al.Cellularity and apparent diffusion coefficient in oligodendroglial tumours characterizedby genotype.J Neurooncol,2010,96:385-392
24.Arvinda HR,Kesavadas C,Sarma PS,et al.Glioma grading:sensitivity,specificity,positive andnegative predictive values of diffusion andperfusion imaging.J Neurooncol,2009,94:87-96
25.Alvarez-Linera J,Benito-Leon J,Escribano J,et al.Predicting the histopathological grade of cerebral gliomas using high b value MR DW imaging at 3-tesla.J Neuroimaging,2008,18:276-281
26.Higano S,Yun X,Kumabe T,et al.Malignant astrocytic tumors:clinical importance of apparent diffusion coefficient in prediction ofgrade andprognosis.Radiology,2006,241:839-846
27.Miura S,Kurita T,Noda,K,et al.Gradingastrocytic tumors by using apparent diffusion coefficient parameters:superiority of a one-versus two-parameter pilot method.Radiology,2009,251:838-845
28.Rumboldt Z,Camacho DL,Lake D,et al.Apparent diffusion coefficients for differentiation of cerebellar tumors in children.AJNR,2006,27:1362-1369
29.Oh J,Cha S,Aiken AH,et al.Quantitative apparent diffusion coefficients and T2 relaxation times in characterizing contrast enhancing brain tumors and regions of peritumoral edema.J Magn Reson Imaging,2005,21:701-708