福建省力学学会
福建省力学学科发展报告
福建省力学学会*
介绍了福建省力学主要学科的研究进展、主要研究成果及在国民经济建设中的主要应用情况与存在的问题,简单介绍了福建力学学科整体在国内外的地位,展望了我省力学学科发展方向及其在海西建设中的作用。
力学 学科 发展报告
福建省力学学科在广大的省内力学工作者长期不懈努力下,通过与国内外同行广泛交流、相互学习,以及不断从国内外引进优秀力学人才,近十年来取得不少成果。目前,虽然总体上在国内还无法处于先进行列,但在某些领域的一些研究成果达到了国内甚至国际先进水准,国内影响也日益增加。但是,福建毕竟是力学小省,从事力学研究的队伍很小,真正从事力学理论、基础研究的人才更少。迄今,我省高校还没有设置力学专业,更没有力学或航空航天学院。正因为我们没有强大的力学研究队伍,我们的研究成果不够系统,也无法形成国内外影响力大的研究团队。力学是目前世界上发展非常快的一个学科,是众多工程技术的基础,其研究成果被广泛应用于先进的航天航空技术、舰船技术、兵器技术、尖端的建筑领域、车辆技术、机器人技术、高速精密机床、电子技术、防震救灾等等。力学学科强的省份,其工程技术各个领域普遍也强。由于经济实力有限,福建省同其他一些省市一样,对力学等基础学科重视不够,导致工程技术人才队伍总体素质不是很高,研究后劲不足。除了高层建筑、大型桥梁、水库等事关国计民生的大项目外,很少见到生产企业借助力学寻找疑难问题的答案,或开发设计新产品。为此,总结力学学科发展,不仅仅是有助于本学科更快更好的发展,更重要的是促进力学对工业进步的推动作用。此外,还可以帮助年轻的力学工作者、力学爱好者,以及政府有关部门,更快更好了解我省乃至全世界力学发展动态、应用与存在的问题,促进力学人才队伍的发展壮大。虽然我省力学人才数量与培养机制在国内处于劣势,然而,力学学科也同其他学科一样,有能力、也期待在海西建设中发挥更大的作用、得到更快的发展。
目前,我省力学学科研究领域主要集中固体力学、流体力学、计算力学、机械动力学与控制、细观力学、实验力学、结构力学等方面。研究内容既有理论方面的,也有许多工程实际应用的,还有关于力学教育的。本学科报告将根据上述7个领域展开。
固体力学研究变形固体在外界因素(如载荷、温度、湿度等)作用下受力、变形、流动、断裂等。包括杆件及理想弹性体变形和破坏;变形固体塑性变形与外力的关系;细长杆稳定性理论;杆系结构、薄板壳以及它们的组合体;裂纹尖端应力场、应变场以及裂纹扩展规律。复合材料构件的力学性能、变形规律和设计准则。固体力学不但促进了近代土木建筑、机械制造和航空航天等工业的进步和繁荣,而且为广泛的自然科学提供了范例或理论基础[1-2]。大到桥梁、航天航空器、核动力结构,小到计算机芯片、生物组织以及近年来高速发展的微/纳米机械等都需要借助固体力学理论和方法。
1.1.1断裂与疲劳方向
通过三点弯曲疲劳试验,分别跟踪监测了40Cr钢及它的两种表面处理试样疲劳损伤过程,得出了40Cr钢经过两种表面处理对其疲劳裂纹萌生寿命有显著影响的结果,提出了对疲劳裂纹萌生寿命测量的一种新方法[3]。根据材料对称循环持久极限和静载强度极限,导出任意循环特征下材料持久极限的估算公式。通过非线性有限元方法对橡胶—钢球支座的橡胶层与钢球粘结界面上及橡胶中间层在扭转载荷作用下存在中心裂纹和环形边缘裂纹的情况进行了数值模拟,给出撕裂能与裂纹尺寸、载荷和橡胶层厚度的关系曲线[4]。针对抽油机井常用油管在循环载荷作用下的疲劳断裂问题进行了理论与实验研究。在实测油管载荷谱与应变谱的基础上应用弹塑性有限元法计算油管螺纹内的应力应变场,并进行了有关的疲劳实验,以得到油管的疲劳强度。
1.1.2 板壳、薄壁杆件及复合材料方向
利用群论方法提出周期区域的分片正交多项式连续函数,在周期区域内利用正交分片多项式逼近位移函数可以大大地降低计算量[5]。推导了一般各向异性板弯曲的积分方程,运用加权残数配点法求解了正交各向异性板弯曲的积分方程。提出了两种新的近似基本解加权双三角级数广义各向同性板解析形式的基本解和加权双三角级数的叠加。根据Timoshenko几何变形假设和Boltzmann叠加原理,推导出控制损伤粘弹性Timoshenko中厚板的非线性动力方程以及简化的Galerkin截断方程组;然后利用非线性动力系统中的数值方法求解了简化方程组[6]。假设翘曲位移及切向位移的分布函数,考虑剪切变形的影响,利用最小势能原理建立了单位均布畸变荷载作用下的薄壁杆件畸变角微分方程[7]。采用一般解法对该畸变角微分方程进行求解,并推导求解的初参数法。采用加权余量法提出一个简支工字型梁在横向荷载作用下临界荷载的计算公式;利用这个式子算出的值与试验结果以及其它数值方法等得到的结果吻合得很好,说明文献[7]提出的公式能迅速、有效地计算薄壁杆件的横向临界荷载。以均布荷载下的抛物线钢管拱为研究对象,在考虑双重非线性的有限元分析基础上,提出纯压钢管拱稳定临界荷载计算的等效柱法[8]。提出了基于杆件连续分布的结构优化方法,优化结果不仅更接近理论解,而且克服了理论解的非均匀各向异性材料的制造困难,也完全避免了各种数值拓扑优化普遍具有的数值不稳定问题[9]。
1.1.3弹性动力学方向
分析了一般粘弹结构特征值问题的特点,建立了一般粘弹结构的模态分析方法。与粘弹结构已有的模态分析方法相比,该方法通用于更一般的粘弹结构,在形式上不涉及粘弹本构关系项,并只涉及一种模态向量[10]。导出了时间步长内计算扰动的确定方法,并进一步采用同步计算消除计算扰动效应和后续步计算消除计算扰动效应,两种途径抵消其不利影响。基于Distorted-Born Iterative方法,提出了一种求解弹性波强非线性逆散射问题的迭代方法。在数值模拟运算时利用矩阵法进行离散处理,并采用正则化原理避免求解病态矩阵方程。应用多重尺度法推得从平方非线性振动系统势能井逃逸的时间。近似势能法用于克服非线性带来的困难。推导了系统的运动学、动力学方程。分析表明,结合系统动量及动量矩守恒关系得到的系统广义Jacobi关系为系统惯性参数的非线性函数。证明了借助于增广变量法可以将增广广义Jacobi矩阵表示为一组适当选择的惯性参数的线性函数。在此基础上,给出了系统参数未知时由空间机械臂末端惯性空间期望轨迹产生机械臂关节铰期望角速度、角加速度的增广自适应控制算法。在高速公路刚架拱实桥动测及单车荷载作用研究基础上,建立多车荷载激振模型,发展了研究刚架拱桥车激共振特性的可视化仿真方法,探讨刚架拱桥在高速多车荷载作用下的共振条件,分析车距、车速和车数对竖向瞬态振动峰值的影响,编制运行多车荷载下振动仿真分析可视化程序。提出了基于压力传感器的汽车重心实时监测机理的力学模型。利用该模型能实时监测汽车的整车重量、重心位置,提供安全装载和安全车速监测与报警,可为汽车安全系统提供可靠的重心计算力学模型,为研制汽车重心实时监测系统提供了必要参数与依据。论述数值计算中新的小波基无单元方法,即用小波基函数取代传统无单元方法中的幂级数基之后,使无单元法具有了小波变换的局域化和多分辨率等优良特性,并能有效地克服有限单元法的网格敏感性和单元之间应力不连续现象,从而不但拓展和丰富了无单元法的理论内容,也为其工程应用开辟了新的途径[11]。
1.1.4工程应用
推导了T型截面梁的弯矩-轴力-曲率关系,提出了分析大偏心体外预应力筋的应力增量和梁弯曲性能的通用方法。比较荷载作用前后,转向座和锚具的变形差,计算出体外筋的应变和应力。因此这一方法考虑了体外筋的变形协调条件,同时自动地考虑了体外筋偏心距的损失。以B样条函数结合配点法直接求解框剪间有限个作用力与力矩,导出的递推公式对任意水平荷载可直接应用。采用动力特解边界元法在时域内求解坝-水-地基动力相互作用问题特性,研究了坝体、地基和系统阻尼对坝体的动力特性、动水压力、动力放大系数及稳定系数的影响。提出了一种求解柔性多体系统控制方程数值方法,在每一时间步,利用Newmark-β直接积分法计算迭代初值,基于控制方程及约束方程的泰勒展开,推导出Newton-Raphson迭代公式,对位移及拉格朗日乘子进行修正。引用Blajer提出的违约修正方法对数值积分过程中约束方程的违约进行修正。提出了地震作用下摩擦耗能支撑参数优化的一种新的数学模型,在给定的几条地震波作用下,在满足框架的规范层间位移角限值要求下,框架各层安装的耗能支撑刚度之和最小,从而实现安装较少的耗能装置而能达到相同的抗震要求[16]。
整体上,我省还没有建立起几个系统、稳定的固体力学研究方向。与国内外比较尚处于相对落后的研究水平。许多研究领域尚处于空白。系统性、原创性研究成果就更少了。
固体力学的研究对象向跨尺度和复杂性方向发展;研究手段以跨学科、交叉性和系统性为特色。其基本理论以研究力与热、电、磁、声、光、化学及生命领域的相互作用,实现从原子、分子的微观结构到纳米结构、细观显微结构,直至宏观结构的多尺度关联理论框架的建立。固体力学可以将地震、边坡失稳、泥石流、矿井崩塌等自然灾害提炼成为具有群体缺陷、裂纹和裂隙的不连续、非均匀介质的力学演化过程,预测和防范突发灾害的发生。固体力学在陆地和海洋石油勘探采集和输运、核电技术、风能技术、高坝技术和高功率水力发电技术、大型工程结构的选址等重大工程中也将发挥愈来愈重要的作用。集传感功能和驱动功能为一体的智能材料和结构蕴含着许多与传统领域不同的力学问题。新型材料与结构的多场耦合力学,包括力-电-磁-热耦合场基础理论与体系、破坏理论、智能结构性能等是固体力学领域充满生机的研究方向。利用生物学和生物技术来设计材料与器件将极大地冲击整个工程界、生物界和医学界。
目前普遍强调工程应用的大社会背景对力学这门基础性学科的发展是极为不利的。鼓励自由探索,促进系统性、原创性、基础性的研究工作是促进力学学科发展的最重要基础工作。主要体现在如下几个方面:
(1)固体力学作为影响广泛的重要基础学科,需要长期、稳定地投入。自由探索和基础研究是科学新思想、新理论和新方法的重要源泉。需要以全面发展的观点长期稳定地处理好基础研究、应用基础研究和工程需求的关系,营造在各方面都鼓励创新的环境。
(2)人才培养,特别是充分发挥优秀人才作用是力学学科发展的重要源泉。建立有利于人才培养的长期、公正、公平、合理的科研成果和科技人才评价体系,力学学科的科学研究和人才培养尤其要避免急功近利。各高校在力学学科的建设上不能以其能否直接解决工程实际问题为取舍的依据,而要以现有人才和研究基础为依据。稳定、扎实的力学学科人才培养可以直接惠及众多相关学科的发展。
(3)从固体力学学科的性质、现状和发展趋势,以及国家需求来看,目前的重要科学问题和前沿领域主要有:微纳米力学、多尺度力学与跨尺度关联和计算、新材料与结构的多场耦合力学、生物材料与仿生材料力学、科学与工程计算与软件、仪器设备研制及实验力学新技术与新表征方法。国家建设需求的重要支撑点和应用发展方向主要有:固体强度与破坏力学、计算力学软件、固体力学在国家安全以及航空航天工程中的应用、大型工程结构与工业装备的力学问题、爆炸与冲击力学、环境与灾害关键力学问题等。
流体力学是力学的一个分支,它主要研究流体的运动以及流体和其它介质间相互作用和流动的规律。流体涉及面广,它可以是气、水,也可以是油或其它流变物质。流体力学在气象、水文、石油勘探、船舶、飞行器和工业机械等领域均有广泛应用。流体力学数学上的描述是著名的Navier-Stokes方程及其各种变化。
空气动力学是流体力学针对空气运动问题的一个分支,也是流体力学研究的一个主要内容。20世纪初,飞机的出现极大地促进了空气动力学的发展。航空器的研究需要了解飞行器周围的压力分布、飞行器的受力状况和阻力等问题,这就促进了流体力学在实验和理论分析方面的发展。20世纪中后期,流体力学开始和其他学科互相交叉和渗透,形成了新的交学科,如物理-化学流体动力学、磁流体力学等。
流体力学研究的手段主要有三:实验,理论分析,数值计算。理论分析是根据流体力学基本方程,通过数学方法进行分析,得出各种定量和定性结果。由于流体运动的复杂性,实验方法在流体力学中占有重要的地位。现代流体力学就是在纯理论的古典流体力学与偏重实验的古典水力学结合后才蓬勃发展起来的。实验对于验证流体运动的基本规律,测定经验参数,解释物理现象均有重要意义。
随着计算机技术和各种高效计算方法的发展,使许多原来无法用理论分析或实验研究的复杂流体问题有了求得数值解的可能性,形成了“计算流体力学”学科。从20世纪60年代起,在飞行器和其它相关工程的设计中,开始大量采用数值模拟,使得数值模拟成为与实验和理论分析相辅相成的一个重要研究手段,并正在成为流体力学的主要发展方向。数值模拟方法特点如下:
①给出流体运动区域内的离散解,而不是一般理论分析方法所关注的解析解;
②它的发展与计算机技术的发展直接相关,因为复杂的流动问题要求大计算量的运算;
③若物理问题的数学模型是正确的,则可在较广泛的流动参数(如马赫数、雷诺数、气体性质、模型尺度等)范围内研究流体力学问题,且能给出流场参数的定量结果。
厦门大学在计算流体力学学科开展了多方面的研究,其主要研究力量分布在数学、海洋、化学、材料、物理机电等院系,并建立了多套高水平的大型计算服务器。特别值得一提的工作是:数学科学学院在可压和不可压粘性流体数学模型的理论探索和高阶数值模拟的研究中取得了具有国际水平的成果,丰富和发展了下面几个重要方法:
2.1.1谱方法(Spectral method)[17-19]。该方法是一类高阶方法,它利用整体高阶多项式逼近偏微分方程的解。它主要有两种形式:从弱形式出发的Galerkin谱方法和从强形式出发的配点法,它们都可以认为是加权残差法的特殊形式。其中配点方法更像差分法,它要求在配置点上满足原方程,与差分法不同的是:它用高阶多项式的准确求导代替了导数的差分逼近。Galerkin谱方法与有限元方法在原理上类似,都是先将偏微分方程定解问题转化成与之等价的变分形式,然后通过试探函数和检验函数的选取来逼近解,它们的主要不同在于试探函数和检验函数的选取以及高维情况下基函数的构造。谱方法的收敛速度取决于解的正则度,当解无限光滑时可以达到指数阶收敛,即比任何代数阶的收敛速度都快,这是谱方法相比差分法和有限元法的一个主要优点。
2.1.2拟谱法和谱元法[20-21]。拟谱方法(Pseudo-spectral method)是一类准谱方法,可以通过从弱形式出发的广义Galerkin谱方法构造,也可以由强形式出发的配点法得到。两者在某些特殊情形下是等价的,但对绝大多数问题,配点法无法导出简洁的弱形式,导致理论分析十分困难。现在配点法正渐渐淡出研究人员的视线。基于广义Galerkin方法的拟谱方法的构造分两步:首先构造问题的Galerkin谱方法,然后利用高精度Gauss型数值积分近似弱形式中的积分。有别于标准谱方法中使用的正交多项式基,在拟谱方法中,基函数通常选择基于数值积分的Lagrange多项式基,这给计算,尤其是非线性问题的计算带来了很大的便利。由于Gauss型数值积分的高精度,在大多数情形下拟谱方法的收敛速度与谱方法相同。传统意义下的谱方法对于复杂区域的处理能力极其有限,这限制了它的应用范围。20世纪80年代发展起来的谱元法(spectral element method)很好地解决了这个问题。谱元法结合了谱方法和有限元法各自的优点,既能处理复杂的计算区域,又有谱方法的高精度,它在不可压流体的计算中取得了很大的成功,如今已是计算流体中最常用的方法之一。谱元法与hp-有限元方法很相似,但两者在发展的初期有许多不同点,hp-有限元使用的多项式阶数不高,所使用的基函数也与谱元法不一样。不过随着两类方法的发展,它们呈现出越来越多的共同点,有些学者已把两类方法归结为同一种方法。由于谱方法还具有低耗散,低色散的优点,如今它已成为湍流数值模拟的主要方法。
2.1.3湍流大涡模拟(Large eddy simulation,LES)[20-22]。自然界中的流体运动主要有两种形式,即层流(laminar)和湍流(turbulence),层流是指流动时流线相互平行的流动,而湍流则是无规则脉动的,有强的涡旋和掺混性。目前一般的看法是:无论是层流还是湍流,它们都服从Navier-Stokes (NS)方程。由于湍流运动特征尺度的多样性,一般来说,直接数值模拟(DNS)仅局限于湍流机理的基础理论研究和一些较简单的问题。湍流大涡模拟(LES)是介于DNS和雷诺平均NS(RANS) 之间的一个折衷方法。LES需要的网格点数比DNS大大减少,这使得它能够应用于许多实际工程计算中。LES仅计算大尺度部分,而亚格子尺度运动(SGS)通过附加模型实现。目前广泛使用的SGS模型有1963年Smagorinsky 提出的“涡粘性” 模型及其变种,如“尺度相似性” 模型,“动力学模型”,“代数涡粘性”模型和“重正化群”模型等,这些模型均在某些特定的情形和适当的假设下适用,且跟所选择的数值方法相关。较新的LES模型包括速度估计模型以及无(显式)模型的单调积分LES(MILES)和谱消去粘性(Spectral vanishing viscosity,即SVV)LES。MILES的基本思想是借助非线性高频限制器来限制高频波段上的能量振荡,可以起到与显式SGS模型同样的效果。而SVV-LES是在谱元法框架内提出的,其基本思想是通过引入线性高频粘性项来抑制可解尺度量在截断频率附件的震荡。与其它LES方法相比,SVV-LES简单且无附加计算量。
20世纪50年代,随着计算机的发展,计算力学这个力学和科学计算的交叉学科得到了快速发展,特别是60年代后有限元法及其相应软件产业的迅猛发展,使得计算力学这个新兴学科迅速渗透到土木、水利、机械、航空、电子及生命科学等各个领域,成为计算机辅助设计(CAE)的重要核心内容,也使得力学这个传统的学科焕发了新的强盛的生命力。在当今科学研究和工程实践中,科学计算已经成为与科学理论、科学实验并行的重要科学方法。2006年美国自然科学基金委员会发布了《基于数值模拟的工程科学》的研究报告,明确指出计算力学和数值模拟在工程科学发展中的重要地位。
近年来我省科技工作者在计算力学及其工程应用方面开展了积极的研究工作,取得了一定的科技成果。在计算力学方法方面,我省学者系统地发展了土木水利、机械、航空航天等领域常见的梁板壳结构的高效无网格分析方法,该方法采用整体坐标建立板壳无网格近似,不仅简便直接,适用于任意复杂形状的壳体,并且可以避免参数变换,大大提高了计算效率。同时该方法利用稳定节点积分构造离散方程,兼顾了稳定、效率和精度,为快速准确地分析和设计这种类型结构提供了一种有效的数值工具。同时,针对福建省暴雨天气常见的土质边坡失稳而产生的滑坡问题,建立了暴雨条件下土质边坡突发失稳的大变形高效无网格模拟法,该方法可有效模拟失稳剪切带所引发的边坡非线性大变形损伤破坏全过程,实现边坡失稳的高效无网格法全过程仿真分析,可为暴雨条件下边坡工程的设计施工、滑坡灾害的预报、预防和加固处理提供理论依据和指导,有重要的理论和实际工程意义。另外,在杂交元研究方面提出了基于基本变形模式的正交化单元构造方法,不仅概念明晰,而且由于不依赖于材料参数而大大提高了计算效率。并且,在拓扑优化方面提出了类桁架结构连续体的拓扑优化方法,有效地避免了棋盘格问题。这些计算力学方法所取得的研究成果得到了国内外同行的引用和认可。
在工程应用方面,我省学者对汽车减震及管道密封橡胶构件的受力断裂行为进行了非线性有限元和无网格分析和模拟,提出了合理的设计方案。对于大型土木结构例如大跨桥梁、大坝与深水进水塔以及深埋特长隧洞等结构,应用有限元法进行了动力抗震抗风分析,取得了满意的结果,提供了有效的工程服务。另外,应用从微观第一原理到宏观有限元无网格计算的多尺度高性能计算方法,成功地进行了材料微观设计。
虽然我省计算力学研究与应用已经得到快速发展,但在国内仍然处于相对落后的地位,表现在原创性研究偏少,参与解决工程实际问题不够。当前我省相关科研工作者应抓住海西发展的大好时机加大科研力度,争取在高性能计算方法、大规模工程问题数值仿真分析、灾害条件下工程机构性能的计算模拟及评估预防、先进的汽车仿真方法与应用以及高性能材料计算设计等方面取得新的突破,同时密切联系实际,切实提高解决海西建设中的工程技术问题的能力。
近年来,福州大学、厦门大学、福建农林大学、华侨大学等在机械动力学与控制方面做了不少工作。我省的机械动力学与控制在以下几个方面的研究在国内具有较鲜明的特色和一定的影响力。
福州大学在单臂、多臂、柔性臂空间机器人系统的运动学规划、动力学分析及控制系统设计等方面进行了系统的研究工作。他们研究了载体姿态无扰、末端爪手障碍规避、机械臂关节受限等不同目标要求下的多种运动学规划方法。在控制系统设计方面,分别给出了单、双臂空间机器人关节空间轨迹及末端爪手惯性空间轨迹跟踪的非线性反馈控制、变结构滑模控制、Terminal滑模控制、模糊变结构控制、鲁棒控制、自适应控制、复合自适应控制、终端滑模自适应控制、鲁棒自适应混合控制、自适应Backstepping滑模控制、自适应模糊滑模控制、基于模糊神经网络的动力学控制、基于速度滤波器的鲁棒控制、模糊小波神经网络控制、模糊基函数自适应神经网络控制、基于RBF神经网络的自适应补偿控制、模糊神经网络自学习控制、神经网络前馈控制及闭链双臂空间机器人基于内力优化配置原则的滑模变结构控制、RBF神经网络滑模补偿控制等一系列相关的控制方案[23-35]。在柔性臂空间机器人控制系统设计方面,给出了各类期望运动的Terminal滑模控制、Backstepping反演控制、于奇异摄动法的Backstepping反演控制、关节运动自适应控制及柔性振动的快速实时抑制、运动模糊控制及柔性振动主动抑制、运动鲁棒跟踪控制及柔性振动主动抑制等多种控制方案。其成果以150余篇论文形式,在国内外学术期刊及会议上发表与交流。此外,福州大学还开展了爬墙机器人安全系统的控制研究,对其提出了变结构控制方法、模糊控制方法等[36-37]。
福州大学针对立井提升系统动力学与控制、摊铺机和振动压路机动力学分析、以及汽车底盘动力学控制[38-42]等方面进行了系列研究,分析了影响提升设备动力学特性的有关结构参数、运动参数,提出了减少其工作过程振动的变结构控制与模糊控制方法;针对高等级道路建设中重要设备——摊铺机的国产化改造与开发设计,系统研究了其工作原理、动力学特性等,建立了相关的动力学模型,确定了影响整机正常工作的动力学特性及其影响因素;为消化吸收并赶超国外先进的汽车电子控制技术,开展了系统的汽车底盘总成的动力学与电子控制技术的系列研究,其研究成果有助于相关新产品的问世或改进。福州大学还对轴向运动弦线横向振动控制进行了多种控制方法的研究[43-46],其成果可用于指导相应产品的开发设计。
迄今,还没有系统地将机械动力学及其控制的研究成果应用于产品开发与产品的更新换代中。目前,国内急需高精尖机床的开发技术与动态分析优化技术等。我省目前是工程机械大省,但还不是强省,进一步提高相关产品性能与可靠性,仍然需要开展大量的工作。我省的工程机械产品的更新换代(如集成优化、计算机智能控制等)、工程机械新产品开发设计与分析、汽车整车集成优化与设计分析、新型汽车电子控制系统开发设计、高速设备性能分析与改进、机械设备计算机智能故障诊断、微型机械产品开发设计等等,均以力学的分析研究为其成功的关键。
为改变这个落后局面,尤其是海西经济建设中更好发挥力学的作用,需要政府、企业、高校等投入更多人力物力,更积极主动地对重要机械产品、大批量生产的机械产品与汽车等开展机械动力学分析研究,对相关进口软件进行二次开发或早日开发出自己的专用机械动力学分析软件,以提高企业的产品开发能力与开发速度。同时增强完善实验能力与手段,实现对重要机械产品开展动力学特性实验,以确保产品性能稳定与可靠性。积极利用国内外的动力学研究成果,开展重要设备、大型设备、危险设施或设备的动态故障诊断研究,确保这些设备、设施安全可靠高效地运行。
细观力学是固体力学的一大分支,即采用连续介质力学方法分析具有细观结构的材料的力学问题,是固体力学与材料科学的交叉学科,其发展对固体力学研究层次的深入以及对材料科学规律的定量化表达都有重要意义。
前几年我省在细观力学方面的研究进展不多,近几年来才有所发展。研究主要集中在PZT和PLZT铁电陶瓷的电致疲劳机理,微观电畴原位观测,应力、高温、腐蚀性环境介质等耦合作用下固体材料的微结构和变形断裂行为的演变规律等几个方向:
①根据铁电材料自发应变与自发极化不唯一性,以及晶界的不同取向,提出自发极化过程中材料能量密度是变形梯度和电位移向量的非凸函数,从能量角度出发,导出铁电铁弹材料的自极化稳定构形所应满足的必要条件,利用两电畴的Gibbs 自由能之差作为畴变方向的判据,由要求板的Gibbs 函数最小来确定畴变量的大小。②进行了PZT 铁电陶瓷四点弯曲试样在交变力、交变电场及机电耦合疲劳作用前后的微裂纹和电畴的观察,获得裂纹扩展与极化方向,加载类型之间关系。③发展了一种原位XRD观测电畴系统,对电疲劳过程中PLZT铁电陶瓷试样表面X射线衍射峰随疲劳次数的变化进行了原位观测。同时,利用SEM观察了疲劳前后试样的断口形貌,并系统地进行了电场特征和温度对PLZT试样电疲劳性能影响的实验观测。④基于Raman散射原理,建立原位观测电畴翻转的Raman测试系统,对三种不同预极化处理的PLZT试样在静电场作用、电循环作用下的裂纹尖端的畴变行为进行了系统研究;通过原位Raman观测PLZT材料在准同型相界附近的相变过程。⑤系统进行牛皮质骨在拉伸、剪切、撕裂三种载荷类型下的裂纹起裂韧性研究。研究了皮质骨中矿物成分对皮质骨动态粘弹性性能的影响,发现皮质骨中的矿物质成分存在将降低胶原纤维的可动性,增强材料的粘弹性特性。⑥对牙齿等生物复合材料的性能进行了研究,发现牙齿具有很明显的压电效应,压电性能与湿度和细管的分布密切相关。⑦研究在不同保护气氛中,不同退火温度对碳化硅纤维的材料断裂强度的影响,揭示了微结构的演变和宏观性能之间的相互关系。2004年3月29~31日,张颖教授于厦门组织召开了全国细观力学会议,清华大学,中科院力学所,浙江大学,同济大学,复旦大学等国内知名高校和研究所的众多教授、专家参加了本次会议。
细观力学和微纳米力学在全球、全国范围内正在迅速扩展和深入,具有多学科交叉的强烈特征,国际竞争非常激烈。我省学者在细观力学方面和微纳米力学方面的投入较少,今后应该在非线性,动态,多物理场,跨尺度、尺度效应,微纳米力学和器件等方面加大研究投入。
1991年,福建省力学学会成立了实验力学专业委员会。福建省力学学会实验力学专业委员挂靠福州大学土木工程学院。
结构力学是土木工程专业的专业基础课,涉及建筑工程、结构工程、道路工程、桥隧工程、水利工程及地下工程等。一方面它以高等数学、理论力学、材料力学等课程为基础,另一方面,它又成为钢结构、钢筋混凝土结构、土力学与地基基础、结构抗震等专业课程的基础,在基础课和专业课的学习中起着承前启后的关键作用。
为增强基础教育并提高结构力学在工程中的应用,自上世纪90年代初,我省高校兴起结构力学教学法研究热潮,把结构力学教学改革推向新的高度,对教学内容进行了模块结构改革,将结构力学教学内容归纳为基础型、扩展型和研究型模块。使用高等教育出版社出版的由龙驭球、李廉锟等教授主编的统编教材的同时,在结构动力学部分,融入结构抗风、抗震、车激振动等学科前沿知识,增加了隔震结构动力反应的内容,补充和修正了传统教学内容中关于“伴生自由振动”的相关结论,实现了与学生原有知识的有机融合;有两项重要教研成果:阶梯形变截面梁“图乘贴补简化”计算方法和刚架拱“考虑二阶效应影响线”问题引入课堂讨论,更新了教学内容。
上世纪90年代末,我省结构力学平面教材和多媒体立体化教材建设取得突破,先后出版了《结构力学解题与思考》(陈燊,中国矿业大学出版社,1999。2007年该书由煤炭工业出版社修订再版)、《广义结构力学及其工程应用》(陈燊,中国铁道出版社,2003)、《结构力学》(祁皑参编,清华大学出版社,2006)等。
芜湖还有一道早点——菜薹面,颇受青睐。外地人不明就里,可能会忽略这道阳春面。腌菜薹,是新鲜的花蕾未绽的油菜薹的前生,怕也只有这边的水土,才能长得出如此可口的油菜薹吧。
正如王光远院士所指出,结构力学学科呈现出“从狭义到广义,从被动到主动,从确定到不确定,并与结构工程渗透融合”的发展趋势。我国在力学领域的理论研究已位居世界先进行列,但在应用软件的研制方面落后了一大步,具有自主知识产权的应用软件寥若晨星。结构力学作为专业基础教育与国际先进水平接轨,体现现代结构力学教育思想;完善教学资源库建设,加强国际教学交流是当务之急。根据工科专业特点,面向能力培养、面向工程实践、面向信息时代、面向一流水准,应是我省结构力学研究与教学所追求的目标。
[1] 国家自然科学基金委员会数学物理科学部. 力学学科发展研究报告[M].北京: 科学出版社, 2007.
[2] 中国科学技术协会. 2006-2007力学学科发展报告[M]. 北京: 中国科学技术出版社, 2007.
[3] 吴维青. 40Cr钢疲劳裂纹萌生寿命的测量[J]. 应用力学学报, 2003, 20(3): 141-144.
[4] 杨晓翔, 刘晓明. 橡胶-钢球支座在扭转载荷作用下的断裂分析[J]. 应用力学学报, 2009, 26(1):176-180.
[5] 林福泳. 板弯曲问题的群论方法[J]. 计算力学学报, 2004, 21(4):459-463.
[6] 程昌钧, 盛冬发等. 损伤粘弹性Timoshenko梁的拟静态力学行为分析[J]. 应用数学和力学, 2006, 27(3):267-274.
[7] 王全凤, 李华煌. 薄壁杆件侧向稳定的近似闭合解[J]. 工程力学, 1996, 13 (2):24-33.
[8] 韦建刚, 陈宝春等. 纯压钢管拱稳定临界荷载计算的等效柱法[J]. 应用力学学报, 2009, 26(1):194-200.
[9] 周克民, 李俊峰. 结构拓扑优化研究方法综述[J]. 力学进展, 2005, 35(1): 69-76.
[10] 童昕, 顾崇衔. 一般粘弹结构的模态分析[J]. 应用力学学报, 2000, 17(1): 67-75.
[11] 周瑞忠, 周小平等. 小波基无单元法及其工程应用[J]. 工程力学,2003, 20(6):70-74.
[12] 黄庆丰, 王全凤等. Wilson-θ法直接积分的运动约束和计算扰动[J]. 计算力学学报,2005,22(4):477-481.
[13] 方德平, 王全凤. 框-剪结构剪力墙可中断高度的分析研究[J]. 工程力学,2007,24(4):124-128.
[14] 叶荣华. 框—剪体系无连续化假定的简化算法[J]. 工程力学, 1994,11(1): 52-59.
[15] 陶忠, 高献. FRP约束混凝土的应力-应变关系[J]. 工程力学, 2005, 22 (4):187-195.
[16] 施景勋, 林建华. 重力坝与水、地基动力祸合系统地震反应的时域分析[J]. 工程力学, 1994, 11(3):99-108.
[17] Mejdi Azaiez, Jie Shen, Chuanju Xu, and Qingqu Zhuang,, SIAM J. Numer. Anal., 2008, 47(1): 271-292.
[18] Roger Peyret,, Springer Verlag, 2002.
[19] Chuanju Xu, Yumin Lin,, Commun. Comput. Phys., 2007,(2): 477-500.
[20] R.Pasquetti, Chuanju Xu,, J. Scient. Computing, 2002, 17(1-3): 273-284.
[21] Zhijian Rong, Chuanju Xu,, Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2): 1-7.
[22] Chuanju Xu,, Journal of Scientific Computing, 2006, 27(1-3): 495-505.
[23] 郭益深,陈力. Terminal sliding mode control for coordinated motion of a space rigid manipulator with external disturbance[J]. Applied Mathematics and Mechanacs, 2008, 29(5):583-590.
[24] 陈志煌,陈力. 漂浮基双臂空间机器人姿态与末端抓手惯性空间轨迹协调运动的模糊滑模控制[J]. 力学季刊, 2008, 29(3): 399-404.
[25] 唐晓腾,陈力.自由漂浮双臂空间机器人基联坐标系内轨迹的一种增广变结构鲁棒控制方法[J]. 中国机械工程, 2008, 19(19): 2278-2282.
[26] 洪昭斌,陈力.双臂空间机器人关节运动的一种增广自适应控制方法[J]. 空间科学学报,2007, 27(4): 347-352.
[27] 陈力, 刘延柱. 带滑移铰空间机械臂协调运动的复合自适应控制[J]. 高技术通讯, 2001, 11(10): 78-82.
[28] 陈力. 参数不确定空间机械臂系统的鲁棒自适应混合控制[J].控制理论与应用. 2004, 21(4): 512-516.
[29] 梁捷,陈力. 具有未知载荷参数的漂浮基空间机械臂姿态、关节协调运动的模糊自适应补偿控制[J]. 空间科学学报,2009,29(3): 338-345.
[30] 洪昭斌,陈力. 基于速度滤波器的漂浮基空间机械臂鲁棒控制[C]. 中国航天可持续发展高峰论坛暨中国宇航学会第三届学术年会, 北京,2008
[31] 郭益深, 陈力. 漂浮基空间机械臂姿态、末端爪手协调运动的自适应神经网络控制[J].工程力学, 2009, 26(7): 181-187.
[32] 郭益深,陈力. 基于RBF神经元网络的漂浮基空间机械臂关节运动自适应控制方法[J]. 中国机械工程, 2008, 19(20): 2463-2468.
[33] 洪昭彬,陈力. 漂浮基双臂空间机器人系统的模糊神经网络自学习控制[J]. 机器人, 2008, 30(5): 435-439.
[34] 黄登峰, 陈力. Neural Network Feed-forward Control of Free-floating Dual-arm Space robot System in Joint Space. The 59thInternational Astronautical Congress, Glasgow, Scotland, 29 September – 3 October 2008.
[35] 郭益深,陈力.漂浮基柔性空间机械臂姿态与关节协调运动的Terminal滑模控制[J]. 动力学与控制学报, 2009, 7(2): 158-163.
[36] 严世榕,S.K. Tso,A new suspension-type maintenance system for tall buildings and its mechanical analysis, Proceedings of IEEE mechatronics and machine vision in practice, Perth, Australia,2003.12.
[37] 严世榕,S.K. Tso,爬墙式机器人安全系统的动力学变结构控制研究[J].机器人,2002,24(2): 122-125.
[38] 严世榕,刘梅,等. 双容器提升系统在加速过程中的动力学控制研究[J]. 振动工程学报,2001,14(3): 322-324.
[39] 严世榕,闻邦椿. 摊铺机压实机构的一种非线性动力学理论研究[J]. 中国公路学报,2000,13(3): 123-126.
[40] 严世榕,林志伟. Study on a new safety control method for a vehicle, Proceedings of IEEE ICAL 2009, Shenyang, 2009.
[41] 严世榕,苏振海. Dynamic control of an electric steering vehicle, Proceedings of IEEE ICAL 2008, Qingdao, 2008.
[42] 管迪,陈乐生. 振动压路机的一种非线性动力学建模与仿真[J]. 系统仿真学报,2007,19(24): 5809-5811,5817.
[43] 张伟,陈立群. Vibration control of an axially moving string system: wave cancellation method., 2006, 175(1).
[44] 张伟,陈立群. 轴向运动弦线横向振动的自适应方法[J]. 机械工程学报, 2006, 42(4): 96-100.
[45] 张伟,陈立群. 轴向运动弦线横向振动控制的Lyapunov方法[J]. 控制理论与应用, 2006, 23(4): 531-535.
[46] 张伟,陈立群. 轴向运动弦线横向振动的线性反馈控制[J].应用力学学报,2006,23(2): 242-245.
[47] 向宇, 程璇, 张颖. PZT 在机电疲劳作用下的微裂纹和畴变[J]. 厦门大学学报,2001,40(1): 74-80.
[48] 张颖. 关于铁电铁弹材料的自然构形[J]. 力学学报, 2000,32(2): 213- 222.
[49] 张颖. 外加电场作用下层状铁电多晶材料板的模拟[J]. 厦门大学学报(自然科学版),1999,38(3): 396-402.
[50] Zhang S, Cheng X., Zhang Y., Recent progress in observations of domain switching in ferroelectric ceramics, RARE METAL MATERIALS AND ENGINEERING,34:31-36 Suppl.2 SEP(2005).
[51] Zhang S, Cheng X., Zhang Y., In situ Raman spectroscopy observation for domain switching of ferroelectric ceramics, ACTA METALLURGICA SINICA, 2005,41 (6).
[52] Chen ZW, Lu ZY, Chen XM, Cheng X., Zhang Y., Effects of electrical characters on electrical fatigue behavior in PLZT ferroelectric ceramics, HIGH-PERFORMANCE CERAMICS, 2005, 1 (2).
[53] Zhang Y., Chen ZW, Cheng X., Zhang S, In situ XRD investigation of domain switching in ferroelectric ceramics PLZT during an electric fatigue process, ACTA METALLURGICA SINICA, 2004, 40 (12).
[54] Chen ZW, Cheng X., Zhang Y., Effect of temperature on electric fatigue behaviour of PLZT ferroelectric ceramics, RARE METAL MATERIALS AND ENGINEERING, 2004, 33 (8).
[55] Chen ZW, Cheng X., Zhang Y., Mechanism of electric fatigue in PLZE ceramics, ACTA METALLURGICA SINICA, 2004, 40 (3).
[56] Ying Zhang, Xuan Cheng, Rong Qian, Fatigue behavior of ferroelectric ceramics under mechanically_/electrically coupled cyclic loads, Materials Science and Engineering A351 (2003):81-85.
[57] Ting Wang, Zude Feng, Dynamic mechanical properties of cortical bone: The effect of mineral content, Materials Letters 59 (2005) 2277 – 2280.
[58] Zude Feng a,), Jae Rho b, Seung Han c, Israel Ziv, Orientation and loading condition dependence of fracture toughness in cortical bone, Materials Science and Engineering C 11 _2000. 41–46.
[59] 冯祖德.皮质骨在拉伸型、剪切型和撕裂型加载条件下的断裂韧性——纵向断裂和横向断裂的比较[J]. 生物医学工程学杂志,1997, 14(3): 199-204.
[60] Liu Y. X., Cheng X., Zhang Y.Phasetransitions near morphotropicphaseboundary in PLZTceramicsobserved by in situRamanspectroscopy, ACTA METALLURGICA SINICA,2008, 44(1):29-33.
[61] ZHANG Sa, CHENC Xuan, ZHANG Ying, In-situ observation on domain switching of PLZT via Raman spectroscopy, Transactions ofNonferrous MetalsSociety of China, 2006, 16:638-642.
[62] Siwei Li, Zude Feng, Hui Mei, Litong Zhang, Mechanical and microstructural evolution of Hi-Nicalon TradeMark SiC fibers annealed in O2–H2O–Ar atmospheres, Materials Science and Engineering A 487 (2008):424-430.
[63] Yao R. Q., Wang Y. Y. Feng Z. D., The effect of high-temperatureannealing on tensile strength and its mechanism of Hi-Nicalon SiC fibres under inert atmosphere, FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2008, 31(9):777-787.
[64] 陈燊.工程力学教改实践中的几个关键问题[J].高等教育研究,1998, (1).
[65] 祁皑,陈燊,陈贞钜.在《结构力学》课程中融入前沿知识的尝试[J].力学与实践,2005, 27(4): 70-72.
[66] 陈燊.贴补法对图乘计算的简化[J]. 力学与实践,1996, 18(2): 58, 62.
[67] 陈燊, 等.考虑Ⅱ阶效应的刚架拱影响线[J]. 福州大学学报(自然科学版),2002, (1): 20.
[68] 陈燊.结构力学教学改革十年回顾[J]. 福州大学学报(哲社版),2005年教育专辑.
[69] 张建霖等.土木工程专业力学教学的改革与探索[J]. 厦门大学学报(哲社版),2000年增刊.
[70] 陈燊等.箱梁现浇预应力组合桁式膺架体系研究[J]. 土木工程学报,2004,(11): 9.
[71] 周克民, 胡云昌.利用有限元构造Michell桁架的一种方法[J]. 力学学报,2002, 34(6): 935-944.
[72] 陈燊, 唐意, 黄文机.多车荷载下刚架拱桥车振仿真可视化研究[J]. 工程力学,2005, 22(1): 218-222.
[73] 陈燊,陈五湖,祁皑.结构力学网络教学综合系统研究[J]. 高等建筑教育,2004, 13(4): 75-77.
课题组成员:
1、严世榕,福州大学车辆振动与电子控制研究所所长、教授。
2、周瑞忠,福州大学土木工程学院教授(本文顾问)。
3、周克民,华侨大学土木工程学院教授。
4、许传矩,厦门大学数学科学学院教授。
6、陈 力,福州大学机械工程学院教授。
7、周志东,厦门大学材料学院副教授。
8、宗周红,福州大学土木工程学院教授。
9、陈 燊,福州大学土木工程学院教授。
* 第一执笔人:严世榕,福州大学车辆振动与电子控制研究所所长、教授。