王雪梅 王 丹 李 会
中图分类号:文献标识码:A文章编号:1673-0992(2009)02-0030-02
摘要:本文论述了高填方路基施工中所需控制的各个环节,及填方中的地下水的排引对高填方路基施工的建议。
一、前言
高速公路作为社会现代文明的产物,对我国的经济发展和社会生活起到了具大的推动作用,因其全封闭、全立交的特点,为满足快速、安全、经济、舒适等社会发展需要,而得到迅速发展,在山区修建高速公路也很普遍,高填深挖路基逐渐增多,如何控制好高填土路基的施工质量,就显得尤为重要。本文主要针对高填土路基施工监控谈几点粗浅看法。
二、高填土路基的主要病害
路基是路面的基础,路基施工质量的好坏,直接影响到路面的质量、影响路面的使用寿命、行车舒适性和行车安全等,因此控制路基的施工质量,尤其是控制高填方路基的施工质量,对减少路基病害的发生,提高公路的使用寿命显得极为重要。
高填方路基的主要病害有:整体或局部沉降、纵横向开裂、滑坍等,其产生的原因主要是工程地质和施工质量。这里主要谈如何控制高填方的施工质量,以减少病害的发生。
三、高填土路基的施工准备阶段
填料的选择很关键,塑性指数较大的粘土不稳定,一般不宜用作填料,非用不可时,必须在接近最佳含水量的情况下碾压,且要设置好排水设施。但含水量超过最佳含水量的两个百分点以上时,必须进行晾晒、掺入石灰或固化材料等技术措施处理。粉质土和细亚砂土这些低粘土比较容易压实,但压实不足时,会由于过分饱水而大大失去稳定性,并且在不利水文、气候条件下易发生冻胀。最合适的是砂性土,容易压实,有足够的稳定性,遇水不致过分泡软。因此高填方施工前,承包人必须对填料做下列试验项目:
1液限、塑限、塑性指数、液性指数;细粒土随着土中含水量的不同,分别处于各种不同的状态。界限含水量尤其是液限、较好地反映出土的某些物理力学特性,如压缩性、胀缩性等,液限是土可塑状态的上限含水量,塑限是土可塑状态的下限含水量。含水量低于缩限。水分蒸发时土体积不再缩小。
2颗粒分析;利用现场取得含粗颗粒之土样,於试验室内进行颗粒分析试验,以求得该土样的完整粒径分布状况。以便于用级配最佳的填筑材料。
3密度;
4相对密度;
5重型击实;试验的目的是用标准的击实方法,测定土的密度与含水率的关系,从而确定土的最大密度与最优含水率。
6承载比(CBR);是评定路基土材料的强度。
7有机质含量及易溶盐含量。
施工监理要对液限、塑限、塑性指数、液性指数、重型击实试验、CBR试验等进行复核,以确保标准性试验的准确性,并要求承包人的自检体系一定要健全、完备。
在开工前要求承包人在试验路段进行压实试验,确定路基施工的机械组合、压实遍数、松铺厚度、压实厚度、松铺系数等施工数据。
四、高填方路基的施工阶段
随着大吨位、重型车的发展,轻型击实试验已不能适应现代交通的需要。按轻型击实试验控制的路基压实,在重型交通作用下,将继续被压实,导致路面变形,甚至破坏。对于高填土路基,采用重型击实试验,以土最大密实度作为标准密实度,使路基强度与稳定性大幅度提高。
实践证明,如压实度大于95%時,填高每增加1米,工后沉降约为1厘米,而车辆荷载作用影响仅为80~150cm深度,路基沉降主要是自重作用,因此,路基的层间压实显然成为控制的重点。路基压实度是保证路基强度及路面使用质量的关键,直接关系到路面的使用性能及寿命。如果路基压实度不足,在运营过程中,路面就可能产生辙槽、裂缝、沉陷等病害,使路面产生剪切破坏。控制层间压实度成为控制施工质量的重中之重,应从以下几个方面着手。
1我国南方雨量充沛,雨季又长,因此,各种乔灌植被生长茂盛。为保证路基的填筑质量,在填筑前,清表和挖除工作要彻底进行必须对植被根系进行彻底挖除。挖除后的根穴要进行分层夯实,达到规定的压实度。监理人员要对根穴压实进行抽检,而按桩号位置作好记录,备查。清表与植根挖除后,按规定进行填前碾压。
2填料控制路基填料不得使用淤泥、沼泽土、有机土、含草皮土、生活垃圾、树根和含有腐朽物质的土,施工中的不合格填料必须弃掉。液限大干50,塑性指数又大于26的土,以及含水量超过规定的土,不得直接作为填料。不同性质的土应分别填筑,不得混填。每种填料累计总厚不宜小于0.5m,当填料发生变化时,或同一种填料填筑超过2000m3时,都要取样进行重型击实试验,确定最大干密度及最佳含水量,以便指导路基的压实施工。
3严格控制含水量含水量是影响压实效果的决定性因素,含水量较小时,水膜润滑作用不明显,外部功能也不能克服粒间引力,土粒相对移动不容易,因此压实效果较
差,压不密实;含水量过大时,土孔隙中会出现自由水,压实功能不能使气体排出,且压实功能的一部分被自由水抵消,减小了有效压力,压实效果也较差,会出现“弹簧”现象,且会粘轮。只有在最佳含水量时,最容易获得最佳的压实效果。理论上,在最佳含水量条件下压实到最大干密度的土体,强度相对最高,水稳定性最好。因此必须严格检测用作填料土的含水量,只有在最佳含水量±2%的范围内才允许进行碾压。在施工现场主要用酒精燃烧法来测定填料土的含水量,如出现含水量ω<ω0—2%时,需加水均匀拌和;当ω>ω0+2%时,需要晾晒。如果施工现场条件允许的话,可采用分段填筑、分段晾晒、分段碾压的处理方法,并且尽量避开雨季施工。
4分层填筑、分层碾压路堤填筑应采用水平分层填筑法施工。同一层次不同用土时,搭接处成斜面,以保证在该层厚度范围内,强度较均匀,防止产生明显变形,同时,对不同类土质应分别做击实试验,以确定最佳含水量和最大干密度,不能几种土质混用一个标准,以免造成压实度不够或超百现象,影响路基的强度和稳定性。采用机械压实时,分层的最大松铺厚度,不应超过30cm(机械摊铺不超过25cm),填筑至路床顶面最后一层的最小压实厚度,不应小于8Cm,压实土层的密实度随深度递减,表面5cm的密实度最高。施工中松铺厚度的控制采用插杆挂线,随机挖孔及水准量测综合控制。填料的摊铺采用平地机整平并辅以人工找平。
路堤边缘往往压实不到位,土体松散,造成雨后滑坍,故施工中边缘部位要求宽填50cm,以保证全宽路基的压实。因此段填方正处于山坡填筑,要求碾压时一定要由外侧向内侧开始碾压,如果由内侧向外侧碾压,将会对填料向外侧挤推,造成边缘下沉。
路基在压实过程中,并不是碾压遍数越多,压实效果越好,只有按试验路段中确定的碾压遍数进行碾压,才能保证每层的整个深度内的压实度处处均匀,达到设计规定
的压实度。如碾压遍数过多,土的密实程度并不会有显著的提高,相反,会造成土体破坏,效果适得其反,且不经济。碾压过程中一定要控制好压路机的碾压速度,由试验路段确定。相邻两次的轮迹重叠应达到15~20cm,保证压实均匀,不出现漏压现象。施工机械要求自重16T以上的振动压路机、推土机、平地机等,以保证碾压质量。
5加强测试检验及压实控制某高填土路段要求填料最小强度、最大粒径、压实度。
为保证压实效果,必须加强测试检验,要求施工单位层层自检压实度,监理层层抽检,检测方法采用灌砂法,检测频率为施工单位按每2000m3检测4处,监理抽检频率为30%以上。抽检点应选在路基压实薄弱处,以确保路基压实质量,对压实度数据要进行数理统计分析,验证压实度代表值k必须满足的条件:=n-cos u o-分布表中随自由度和保证率(或置信度)而变的系数: -检验值的均方差; -检测点数; 0-压实度标准值; 应用数理统计的方法,比单纯算术加权平均值法要求更为严格,只有每一压实层,检验评定合格后,才允许填筑下一层,否则,需继续碾压处理,直至合格。 当填料土质发生变化时,及同一填料填筑≥2000m3后,必须重新做重型击实试验,确定最大干容重及最佳含水量,灌砂法所用的标准砂也必须经常标定,以保证压实度检测的准确可靠性,在灌砂法的操作工艺上,取土样的底面位置必须为每一压实层底部,以保证检测数据的真实有效。只有层层控制填土的压实度,才能保证全深度范围内的压实质量。 6控制施工工艺,保证高填方路基的整体稳定性当路堤在斜坡上填筑,其垂直路中线测得的原坡陡于1:5时,原地面要挖成台阶状,横坡陡峻地段的半填半挖路基,必须在山坡上从填方坡角向上挖成向内倾斜的台阶,坡度为2%,台阶宽度不应小于1m,并进行夯实。笔者所监理的高填方路段。所开台阶高1m,宽2m,向内倾斜,坡度不小于2%,利用小型机具进行夯实,施工中杜绝施工单位制造假台阶蒙混过关。为了进一步加强高填方路基的整体稳定性。在地质条件较差路段,建议在台阶部位增设铺筑土工格栅的施工工艺。 五、地下水与地表水的排出 水是引起路基各种病害的主要因素,我国南方省份年降水量大,山体地下水极其丰富,如处理不当,将会造成恶劣后果。为了将地下水畅通的排出路基以外,笔者施工路段填方专门设置了碎石盲沟,盲沟主沟总长度91.65m、支沟199.3m,成功地将山体中的地下水引入河流。 在肓沟修建过程中,现场施工人员应注意:(1)检查盲沟基槽深度、底部高程、断面尺寸、平面位置;(2)检查盲沟基础(底部不透水层)强度、纵坡;(3)检查盲沟侧墙垂直度、钭坡度、纵向顺直度;(4)检查填筑的透水材料级配、含泥量、密实度、不同透水材料的填筑层次和土工合成材料。在以上项目的检查中,如发现不符合设计标准的,要及时纠正。 随着路基填筑高度的增加,更应及时排除路基顶表积水,根据纵断面高程的变化,每隔2-30m设置一处临时排水水簸箕,这样既防止了雨水冲刷边坡造成冲沟,又能将路基顶面积水排出,避免路基顶面积水引发的各种病害,为路基雨后及时施工创造了条件。 六、关于高填方路基施工的建议 为了更好地保证高填方路基的压实效果及整体性,减少病害的发生,建议高填方路基施工中每10层施加重夯一遍,每10层测一次弯沉,以增加压实量和检测工作,确保压实质量。