赵建永
摘 要:对异形柱与短肢剪力墙结构设计中的一些问题,如计算方法、异形柱受力性能及其轴压比控制、短肢剪力墙结构中转换层的设置高度及框支柱等进行探讨,提出建议,供结构设计人员参考。
关键词:异形柱;短肢剪力墙;结构设计
现代住宅建筑要求大开间,平面及房间布置灵活、方便,室内不出现柱楞、不露梁等。异形柱与短肢剪力墙结构能较好地满足现代住宅建筑的要求,因而逐渐得到了推广应用。本文旨在对异形柱与短肢剪力墙结构设计中的一些问题进行探讨,提出个人看法,供结构设计人员参考。
1 异形柱结构型式及其计算
异形柱结构型式有异形柱框架结构、异形柱框架——剪力墙结构和异形柱框架-核心筒结构。
异形柱结构自身的特点决定了其受力性能、抗震性能与矩形柱结构不同。由于异形柱截面不对称,在水平力作用下产生的双向偏心受压给承载力带来的影响不容忽视。因此,对异形柱结构应按空间体系考虑,宜优先采用具有异形柱单元的计算程序进行内力与位移分析。因异形柱和剪力墙受力不同,所以计算时不应将异形柱按剪力墙建模计算。
当采用不具有异形柱单元的空间分析程序(如TBSA 5.0)计算异形柱结构时,可按薄壁杆件模型进行内力分析。
对异形柱框架结构,一般宜按刚度等效折算成普通框架进行内力与位移分析。当刚度相等时,矩形柱比异形柱的截面面积大。一般,比值(A矩/A异)约在1.10-1.30之间。因此,用矩形柱替换后计算出的轴压比数值不能直接应用于异形柱,建议用比值(A矩/A异)对轴压比计算值加以放大后再用于异形柱。
对有剪力墙(或核心筒)的异形柱结构,由于异形柱分担的水平剪力很小,由此产生的翘曲应力基本可以忽略,为简化计算,可按面积等效或刚度等效折算成普通框架——剪力墙(或核心筒)结构进行内力与位移分析。按面积等效更能反映异形柱轴压比的情况,且面积等效计算更为简便。但应注意,按面积等效计算时,须同时满足下面两式:
A矩=A异;(2)b/h=(Ix异/Iy异)1/2
式中,A矩、A异——分别为矩形柱和异形柱的截面面积;
b、h——分别为矩形截面的宽和高;
Ix异 、Iy异——分别为异形柱截面x、y向的主形心惯性矩。
一般,按面积等效计算时,矩形柱的惯性矩比异形柱的小。但对有剪力墙(或核心筒)的异形柱结构,计算分析表明,按面积等效与按刚度等效的计算结果是接近的。
异形柱的截面设计,可根据上述方法得出的内力,采用适合异形柱截面受力特性的截面计算方法进行配筋计算。
2 短肢剪力墙结构及其计算
短肢剪力墙结构是适应建筑要求而形成的特殊的剪力墙结构。其计算模型、配筋方式和构造要求均同于普通剪力墙结构。在TAT、TBSA中,只需按剪力墙输入即可,而且TAT、TBSA更适合用来计算短肢剪力墙结构。TAT、TBSA所用的计算模型都是杆件、薄壁杆件模型,其中梁、柱为普通空间杆件,每端有6个自由度,墙视为薄壁杆件,每端有7个自由度(多一个截面翘曲角,即扭转角沿纵轴的导数),考虑了墙单元非平面变形的影响,按矩阵位移法由单元刚度矩阵形成总刚度矩阵,引入楼板平面内刚度无限大假定减少部分未知量之后求解,它适用于各种平面布置,未知量少,精度较高。但是,薄壁杆件模型在分析剪力墙较为低宽、结构布置复杂(如有转换层)时,也存在一些不足,主要是薄壁杆件理论没有考虑剪切变形的影响,当结构布置复杂时变形不协调。而短肢剪力墙结构由于肢长较短(一般为墙厚的5-8倍),本身较高细,更接近于杆件性能,所以,用TAT、TBSA计算短肢剪力墙结构能较好地反映结构的受力,精度较高。
3 异形柱的受力性能及其轴压比控制
异形柱由于多肢的存在,其剪力中心与截面形心往往不重合,在受力状态下,各肢产生翘曲正应力和剪应力。由于剪应力,使柱肢混凝土先于普通矩形柱出现裂缝,即产生腹剪裂缝,导致异形柱脆性明显,使异形柱的变形能力比普通矩形柱降低。
作为异形柱延性的保证措施,必须严格控制轴压比,同时避免高长比小于4(短柱)。控制柱截面轴压比的目的,在于要求柱应具有足够大的截面尺寸,以防止出现小偏压破坏,提高柱的变形能力,满足抗震要求。广东《规程》按建筑抗震设计规范(GBJ11-89)中所规定的柱子轴压比降低0.05取用(按截面的实际面积计算);天津《规程》则根据箍筋间距与主筋直径之比、箍筋直径及抗震等级共同确定,其要求比广东《规程》严格,例如,对s/d=5、4(即箍筋间距s=100mm,纵筋直径d分别为20mm、25mm的情况),箍筋直径dv=8mm,抗震等级为三级的L形截面,其轴压比限值分别为0.60,0.65。异形柱是从短肢剪力墙向矩形柱过渡的一种构件,柱肢截面的肢厚比(即肢长/肢宽)不大于4。《高规》(JGJ3-91)第5.3.4条,“抗震设计时,小墙肢的截面高度不宜小于3bw”,“一、二级剪力墙的小墙肢,其轴压比不宜大于0.6”。根据上述分析,为便于应用,建议在6度设防区,对于异形柱框架结构,L形截面柱的轴压比不应超过0.6(按截面的实际面积计算,下同),T形截面柱的的轴压比不应超过0.65,十字形截面柱的轴压比不应超过0.8;对于异形柱框架-剪力墙(或核心筒)结构,由于框架是第二道抗震防线,所以框架柱的轴压比限值可放宽到0.65(L形)、0.70(T形)、0.90(+字形),但对于转换层下的支承柱,其轴压比仍不应超过0.60。
4 短肢剪力墙结构的抗震薄弱环节及概念设计
振动台模拟地震试验结果表明,建筑平面外边缘及角点处的墙肢、底部外围的小墙肢、连梁等是短肢剪力墙结构的抗震薄弱环节。当有扭转效应,建筑平面外边缘及角点处的墙肢会首先开裂;在地震作用下,高层短肢剪力墙结构将以整体弯曲变形为主,底部外围的小墙肢,截面面积小且承受较大的竖向荷载,破坏严重,尤其“一”字形小墙肢破坏最严重;在短肢剪力墙结构中,由于墙肢刚度相对减小,使连梁受剪破坏的可能性增加。因此,在短肢剪力墙结构设计中,对这些薄弱环节,更应加强概念设计和抗震构造措施。例如,短肢剪力墙在平面上分布要力求均匀,使其刚度中心和建筑物质心尽量接近,以减小扭转效应;适当增加建筑平面外边缘及角点处的墙肢厚度(宜取250mm,对底部外围的小墙肢根据需要可取用300mm),加强墙肢端部的暗柱配筋,严格控制墙肢截面的轴压比不超过0.6,以提高墙肢的承载力和延性;高层结构中连梁是一个耗能构件,连梁的剪切破坏会使结构的延性降低,对抗震不利,设计时应注意对连梁进行“强剪弱弯”的验算,保证连梁的受弯屈服先于剪切破坏;短肢剪力墙宜在两个方向均有梁与之拉结,连梁宜布置在各肢的平面内,避免采用“一”字形墙肢;短肢剪力墙底部加强部位的配筋应符合规范要求;等。
参考文献
[1]戴教芳.多层框架异形柱设计探索[J].工业建筑,1996,26(1):33-35.
[2]龙卫国.异形柱受力性能及结构设计有关问题探讨[J].四川建筑,2000,20(2):50-52.
[3]赵玉祥.钢筋混凝土高层建筑设计中若干问题的探讨[J].建筑结构学报.1998,19(2):12-22.
[4]赵艳静等.钢筋混凝土异形截面双向压弯柱延性性能的理论研究[J].建筑结构.1999,29(1):16-21.
[5]徐培福等.转换层设置高度对框支剪力墙结构抗震性能的影响[J].建筑结构.2000,30(1):38-42.
[6]肖文韬等.高层建筑结构计算模型的选取.第五届全国高层建筑抗震技术交流会论文集[S].桐庐,1995.11.
[7]程绍革等.高层建筑短肢剪力墙结构振动台试验研究[J].建筑科学.2000,16(1):12-16.