戴广伟
摘要:本文阐述了工程测量学领域通用和专用仪器的发展;扼要地叙述了大型特种精密工程测量在国内外的发展情况。结合科研和开发实践,简介了地面控制与施工测量工程内外业数据处理一体化自动化系统--科傻系统。最后展望了21世纪工程测量学若干发展方向。
关键词:工程测量;工业测量;精密工程测量;测量机器人;工程网优化设计
1 工程测量仪器的发展
工程测量仪器可分通用仪器和专用仪器。通用仪器中常规的光学经纬仪、光学水准仪和电磁波测距仪将逐渐被电子全测仪、电子水准仪所替代。电脑型全站仪配合丰富的软件,向全能型和智能化方向发展。带电动马达驱动和程序控制的全站仪结合激光、通讯及CCD技术,可实现测量的全自动化,被称作测量机器人。测量机器人可自动寻找并精确照准目标,在1s内完成一目标点的观测,像机器人一样对成百上千个目标作持续和重复观测,可广泛用于变形监测和施工测量。GPS接收机已逐渐成为一种通用的定位仪器在工程测量中得到广泛应用。将GPS接收机与电子全站仪或测量机器人连接在一起,称超全站仪或超测量机器人。它将GPS的实时动态定位技术与全站仪灵活的3维极坐标测量技术完美结合,可实现无控制网的各种工程测量。
专用仪器是工程测量学仪器发展最活跃的,主要应用在精密工程测量领域。其中,包括机械式、光电式及光机电(子)结合式的仪器或测量系统。主要特点是:高精度、自动化、遥测和持续观测。
用于建立水平的或竖直的基准线或基准面,测量目标点相对于基准线(或基准面)的偏距(垂距),称为基准线测量或准直测量。这方面的仪器有正、倒锤与垂线观测仪,金属丝引张线,各种激光准直仪、铅直仪(向下、向上)、自准直仪,以及尼龙丝或金属丝准直测量系统等。
在距离测量方面,包括中长距离(数十米至数公里)、短距离(数米至数十米)和微距离(毫米至数米)及其变化量的精密测量。以ME5000为代表的精密激光测距仪和TERRAMETER LDM2双频激光测距仪,中长距离测量精度可达亚毫米级;可喜的是,许多短距离、微距离测量都实现了测量数据采集的自动化,其中最典型的代表是铟瓦线尺测距仪DISTINVAR,应变仪DISTERMETER ISETH,石英伸缩仪,各种光学应变计,位移与振动激光快速遥测仪等。采用多谱勒效应的双频激光干涉仪,能在数十米范围内达到0.01μm的计量精度,成为重要的长度检校和精密测量设备;采用CCD线列传感器测量微距离可达到百分之几微米的精度,它们使距离测量精度从毫米、微米级进入到纳米级世界。
高程测量方面,最显著的发展应数液体静力水准测量系统。这种系统通过各种类型的传感器测量容器的液面高度,可同时获取数十乃至数百个监测点的高程,具有高精度、遥测、自动化、可移动和持续测量等特点。两容器间的距离可达数十公里,如用于跨河与跨海峡的水准测量;通过一种压力传感器,允许两容器之间的高差从过去的数厘米达到数米。
与高程测量有关的是倾斜测量(又称挠度曲线测量),即确定被测对象(如桥、塔)在竖直平面内相对于水平或铅直基准线的挠度曲线。各种机械式测斜(倾)仪、电子测倾仪都向着数字显示、自动记录和灵活移动等方向发展,其精度达微米级。
具有多种功能的混合测量系统是工程测量专用仪器发展的显著特点,采用多传感器的高速铁路轨道测量系统,用测量机器人自动跟踪沿铁路轨道前进的测量车,测量车上装有棱镜、斜倾传感器、长度传感器和微机,可用于测量轨道的3维坐标、轨道的宽度和倾角。液体静力水准测量与金属丝准直集成的混合测量系统在数百米长的基准线上可精确测量测点的高程和偏距。
2 科技研究开发实践
将科研成果转化为生产力是科研的最终目的,作为一门应用性学科,这种转化尤为重要。它主要表现在软硬件的开发研制上。
基于掌上电脑的地面控制与施工测量工程内外业数据处理一体化自动化系统(简称科傻系统)是我们近年来所作的一项科技研究开发实践。科傻系统是对电子全站仪实现在线控制数据采集。掌上电脑上可固化两个软件包,一个用于地面控制测量数据采集、检查、预处理、概算以及网平差等(称科傻一);一个用于工程放样、道路测量以及碎部点数据采集(称科傻三)。另外,在微机上研制了一个“现代测量控制网数据处理通用软件包”(称科傻二)。上述3个软件包既可独立使用,又有密切的联系(特别是科傻一与科傻二之间)。科傻一可用于任意2、3维工程控制网,国家及城市等级网,一、二、三级导线网以及图根加密网的在线或离线数据采集到网平差,实现了内外业数据处理的一体化。同时也可作一、二、三、四等和等外水准测量从数据采集到网平差的数据处理。科傻二除具有任意网形、任意规模的地面平面、高程控制网的平差功能外,还包含近似坐标计算,稀疏矩阵压缩存贮,网点优化排序,闭合差自动计算,概算,粗差定值计算和改正,方差分量估计,贯通误差影响值估算,工程控制网模拟法优化设计,控制网数据管理,网图显绘,成果报表输出,以及与掌上电脑、全站仪的数据通讯等功能。
科傻系统集成了测量学、控制测量学、工程测量学、测量平差等课程的有关专业知识和长期科研成果,可广泛应用于生产、教学及科技开发活动。
基于科傻系统的主要功能,在索佳Powerset 2000电脑型全站仪上,已成功地开发了全中文版软件包,这种全站仪通过软件开发,功能得到大大增强,故称为全能型全站仪。结合专业测量特点,我们在科傻系统的基础上还研制开发了“铁路施工测量数据自动化处理系统”。该软件包也通过了铁道部的鉴定,将在整个铁路系统的测量单位推广应用。对于城市工程测量、地籍测量、水利工程测量等各种测量,只要对科傻系统稍加修改,都可以满足测量工程数据采集和处理的一体化自动化要求。同时,可将科傻系统移植应用到不同型号的电脑型全站仪上和商品化掌上电脑上,进一步扩大用户。如果移植到测量机器人上,并进一步开发各种智能化应用程序,可应用到滑坡监测、施工测量中以及工业测量。若再开发与GPS网平差和实时动态定位软件的集成软件包,并研制开发相应的软件,可望大大改变目前工程测量领域的面貌。
3 工程测量学的发展展望
展望21世纪,工程测量学在以下方面将得到显著发展:
测量机器人将作为多传感器集成系统在人工智能方面得到进一步发展,其应用范围将进一步扩大,影像、图形和数据处理方面的能力进一步增强;
在变形观测数据处理和大型工程建设中,将发展基于知识的信息系统,并进一步与大地测量、地球物理、工程与水文地质以及土木建筑等学科相结合,解决工程建设中以及运行期间的安全监测、灾害防治和环境保护的各种问题。
工程测量将从土木工程测量、3维工业测量扩展到人体科学测量,如人体各器官或部位的显微测量和显微图像处理;
多传感器的混合测量系统将得到迅速发展和广泛应用,如GPS接收机与电子全站仪或测量机器人集成,可在大区域乃至国家范围内进行无控制网的各种测量工作。
GPS、GIS技术将紧密结合工程项目,在勘测、设计、施工管理一体化方面发挥重大作用。
大型和复杂结构建筑、设备的3维测量、几何重构以及质量控制将是工程测量学发展的一个特点。
数据处理中数学物理模型的建立、分析和辨识将成为工程测量学专业教育的重要内容。
综上所述,工程测量学的发展,主要表现在从1维、2维到3维、4维,从点信息到面信息获取,从静态到动态,从后处理到实时处理,从人眼观测操作到机器人自动寻标观测,从大型特种工程到人体测量工程,从高空到地面、地下以及水下,从人工量测到无接触遥测,从周期观测到持续测量。测量精度从毫米级到微米乃至纳米级。工程测量学的上述发展将直接对改善人们的生活环境,提高人们的生活质量起重要作用。
参考文献
[1]章传银,张正禄.变形体的稳定性及定量分析方法初探[J].测绘学报,1997,(4):315-321.
[2]张正禄,黄全义,等.从“科傻”系统到全能型全站仪[J].东北测绘,1998,(1):5-7.
[3]张正禄,黄全义,等.全站式地面测量工程一体化自动化系统研究[J].武汉测绘科技大学学报,1999,(1):79-82. [4]张正禄.工程测量学的发展现状和趋势[J].武汉测绘科技大学学报,1999,(增刊).